Predicting Corporate Credit Ratings Using Content Analysis of Annual Reports - A Naive Bayesian Network Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F17%3A39911516" target="_blank" >RIV/00216275:25410/17:39911516 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-319-52764-2_4" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-52764-2_4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-52764-2_4" target="_blank" >10.1007/978-3-319-52764-2_4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predicting Corporate Credit Ratings Using Content Analysis of Annual Reports - A Naive Bayesian Network Approach
Popis výsledku v původním jazyce
Corporate credit ratings are based on a variety of information, including financial statements, annual reports, management interviews, etc. Financial indicators are critical to evaluate corporate creditworthiness. However, little is known about how qualitative information hidden in firm-related documents manifests in credit rating process. To address this issue, this study aims to develop a methodology for extracting topical content from firm-related documents using latent semantic analysis. This information is integrated with traditional financial indicators into a multi-class corporate credit rating prediction model. Informative indicators are obtained using a correlation-based filter in the process of feature selection. We demonstrate that Naive Bayesian networks perform statistically equivalent to other machine learning methods in terms of classification performance. We further show that the "red flag" values obtained using Naive Bayesian networks may indicate a low credit quality (non-investment rating classes) of firms. These findings can be particularly important for investors, banks and market regulators.
Název v anglickém jazyce
Predicting Corporate Credit Ratings Using Content Analysis of Annual Reports - A Naive Bayesian Network Approach
Popis výsledku anglicky
Corporate credit ratings are based on a variety of information, including financial statements, annual reports, management interviews, etc. Financial indicators are critical to evaluate corporate creditworthiness. However, little is known about how qualitative information hidden in firm-related documents manifests in credit rating process. To address this issue, this study aims to develop a methodology for extracting topical content from firm-related documents using latent semantic analysis. This information is integrated with traditional financial indicators into a multi-class corporate credit rating prediction model. Informative indicators are obtained using a correlation-based filter in the process of feature selection. We demonstrate that Naive Bayesian networks perform statistically equivalent to other machine learning methods in terms of classification performance. We further show that the "red flag" values obtained using Naive Bayesian networks may indicate a low credit quality (non-investment rating classes) of firms. These findings can be particularly important for investors, banks and market regulators.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-19590S" target="_blank" >GA16-19590S: Analýza témat a sentimentu vícenásobných textových zdrojů pro finanční rozhodování podniků</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Enterprise Applications, Markets and Services in the Finance Industry
ISBN
978-3-319-52764-2
ISSN
1865-1348
e-ISSN
neuvedeno
Počet stran výsledku
15
Strana od-do
47-61
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Frankfurt
Datum konání akce
8. 12. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000416109500004