Predicting corporate investment/non-investment grade by using interval-valued fuzzy rule-based systems-A cross-region analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F18%3A39913370" target="_blank" >RIV/00216275:25410/18:39913370 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1568494617306427" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494617306427</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.asoc.2017.10.037" target="_blank" >10.1016/j.asoc.2017.10.037</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predicting corporate investment/non-investment grade by using interval-valued fuzzy rule-based systems-A cross-region analysis
Popis výsledku v původním jazyce
Systems for predicting corporate rating have attracted considerable interest in soft computing research due to the requirements for both accuracy and interpretability. In addition, the high uncertainty associated primarily with linguistic uncertainties and disagreement among experts is another challenging problem. To overcome these problems, this study proposes a hybrid evolutionary interval-valued fuzzy rule-based system, namely IVTURS, combined with evolutionary feature selection component. This model is used to predict the investment/non-investment grades of companies from four regions, namely Emerging countries, the EU, the United States, and other developed countries. To evaluate prediction performance, a yield measure is used that combines the return and default rates of companies. Here, we show that using interval-valued fuzzy sets leads to higher accuracy, particularly with the growing granularity at the fuzzy partition level. The proposed prediction model is then compared with several state-of-the-art evolutionary fuzzy rule-based systems. The obtained results show that the proposed model is especially suitable for high-dimensional problems, without facing rule base interpretability issues. This finding indicates that the model is preferable for investors oriented toward developed markets such as the EU and the United States.
Název v anglickém jazyce
Predicting corporate investment/non-investment grade by using interval-valued fuzzy rule-based systems-A cross-region analysis
Popis výsledku anglicky
Systems for predicting corporate rating have attracted considerable interest in soft computing research due to the requirements for both accuracy and interpretability. In addition, the high uncertainty associated primarily with linguistic uncertainties and disagreement among experts is another challenging problem. To overcome these problems, this study proposes a hybrid evolutionary interval-valued fuzzy rule-based system, namely IVTURS, combined with evolutionary feature selection component. This model is used to predict the investment/non-investment grades of companies from four regions, namely Emerging countries, the EU, the United States, and other developed countries. To evaluate prediction performance, a yield measure is used that combines the return and default rates of companies. Here, we show that using interval-valued fuzzy sets leads to higher accuracy, particularly with the growing granularity at the fuzzy partition level. The proposed prediction model is then compared with several state-of-the-art evolutionary fuzzy rule-based systems. The obtained results show that the proposed model is especially suitable for high-dimensional problems, without facing rule base interpretability issues. This finding indicates that the model is preferable for investors oriented toward developed markets such as the EU and the United States.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-10331S" target="_blank" >GA13-10331S: Úloha textové informace v modelech predikce finanční tísně podniků - přístupy specifické podle států a průmyslových odvětví</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Soft Computing
ISSN
1568-4946
e-ISSN
—
Svazek periodika
62
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
73-85
Kód UT WoS článku
000418333500006
EID výsledku v databázi Scopus
2-s2.0-85032451278