Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Predicting corporate investment/non-investment grade by using interval-valued fuzzy rule-based systems-A cross-region analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F18%3A39913370" target="_blank" >RIV/00216275:25410/18:39913370 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1568494617306427" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494617306427</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.asoc.2017.10.037" target="_blank" >10.1016/j.asoc.2017.10.037</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Predicting corporate investment/non-investment grade by using interval-valued fuzzy rule-based systems-A cross-region analysis

  • Popis výsledku v původním jazyce

    Systems for predicting corporate rating have attracted considerable interest in soft computing research due to the requirements for both accuracy and interpretability. In addition, the high uncertainty associated primarily with linguistic uncertainties and disagreement among experts is another challenging problem. To overcome these problems, this study proposes a hybrid evolutionary interval-valued fuzzy rule-based system, namely IVTURS, combined with evolutionary feature selection component. This model is used to predict the investment/non-investment grades of companies from four regions, namely Emerging countries, the EU, the United States, and other developed countries. To evaluate prediction performance, a yield measure is used that combines the return and default rates of companies. Here, we show that using interval-valued fuzzy sets leads to higher accuracy, particularly with the growing granularity at the fuzzy partition level. The proposed prediction model is then compared with several state-of-the-art evolutionary fuzzy rule-based systems. The obtained results show that the proposed model is especially suitable for high-dimensional problems, without facing rule base interpretability issues. This finding indicates that the model is preferable for investors oriented toward developed markets such as the EU and the United States.

  • Název v anglickém jazyce

    Predicting corporate investment/non-investment grade by using interval-valued fuzzy rule-based systems-A cross-region analysis

  • Popis výsledku anglicky

    Systems for predicting corporate rating have attracted considerable interest in soft computing research due to the requirements for both accuracy and interpretability. In addition, the high uncertainty associated primarily with linguistic uncertainties and disagreement among experts is another challenging problem. To overcome these problems, this study proposes a hybrid evolutionary interval-valued fuzzy rule-based system, namely IVTURS, combined with evolutionary feature selection component. This model is used to predict the investment/non-investment grades of companies from four regions, namely Emerging countries, the EU, the United States, and other developed countries. To evaluate prediction performance, a yield measure is used that combines the return and default rates of companies. Here, we show that using interval-valued fuzzy sets leads to higher accuracy, particularly with the growing granularity at the fuzzy partition level. The proposed prediction model is then compared with several state-of-the-art evolutionary fuzzy rule-based systems. The obtained results show that the proposed model is especially suitable for high-dimensional problems, without facing rule base interpretability issues. This finding indicates that the model is preferable for investors oriented toward developed markets such as the EU and the United States.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA13-10331S" target="_blank" >GA13-10331S: Úloha textové informace v modelech predikce finanční tísně podniků - přístupy specifické podle států a průmyslových odvětví</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Soft Computing

  • ISSN

    1568-4946

  • e-ISSN

  • Svazek periodika

    62

  • Číslo periodika v rámci svazku

    January

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    13

  • Strana od-do

    73-85

  • Kód UT WoS článku

    000418333500006

  • EID výsledku v databázi Scopus

    2-s2.0-85032451278