Small Water Bodies Identification by means of Remote Sensing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F18%3A39913460" target="_blank" >RIV/00216275:25410/18:39913460 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Small Water Bodies Identification by means of Remote Sensing
Popis výsledku v původním jazyce
Remotely sensed data are frequently used to identify water bodies. In comparison with UAV data, they are limited by resolution and availability. Paper evaluates suitability of Landsat 8, Sentinel 2 and UAV data in the case of identification of shorelines of smaller water bodies. For the study, surrounding of Pardubice city (the Czech Republic) is an area of interest. Three data sources are used: Landsat 8, Sentinel 2 and UAV data. Several algorithms are used for spectral enhancement and data classification: Iso Cluster, Maximum Likelihood, Class Probability, Principal Components, and NDWI. Manual classification is used as a reference method. No post-classification method is used to preserve shapes of small water bodies. Error matrix is used for evaluation of the classification quality. Multi-criteria evaluation shows that Sentinel 2 data classified by means of Iso Cluster provides the best results. NDWI is very close to the best results. Next, we demonstrate that UAV can provide data with a higher spatial resolution on demand for reasonable costs so they are more suitable for small water bodies. Heterogeneity of the data and treetops overlapping the shoreline led to the manual classification based on the results of Iso Cluster classification.
Název v anglickém jazyce
Small Water Bodies Identification by means of Remote Sensing
Popis výsledku anglicky
Remotely sensed data are frequently used to identify water bodies. In comparison with UAV data, they are limited by resolution and availability. Paper evaluates suitability of Landsat 8, Sentinel 2 and UAV data in the case of identification of shorelines of smaller water bodies. For the study, surrounding of Pardubice city (the Czech Republic) is an area of interest. Three data sources are used: Landsat 8, Sentinel 2 and UAV data. Several algorithms are used for spectral enhancement and data classification: Iso Cluster, Maximum Likelihood, Class Probability, Principal Components, and NDWI. Manual classification is used as a reference method. No post-classification method is used to preserve shapes of small water bodies. Error matrix is used for evaluation of the classification quality. Multi-criteria evaluation shows that Sentinel 2 data classified by means of Iso Cluster provides the best results. NDWI is very close to the best results. Next, we demonstrate that UAV can provide data with a higher spatial resolution on demand for reasonable costs so they are more suitable for small water bodies. Heterogeneity of the data and treetops overlapping the shoreline led to the manual classification based on the results of Iso Cluster classification.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
7th International Conference on Cartography and GIS : proceedings vol. 1, 2
ISBN
—
ISSN
1314-0604
e-ISSN
—
Počet stran výsledku
8
Strana od-do
718-726
Název nakladatele
Bulgarian Cartographic Association
Místo vydání
Sofie
Místo konání akce
Sozopol
Datum konání akce
18. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000526176700079