Spam filtering in social networks using regularized deep neural networks with ensemble learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F18%3A39913513" target="_blank" >RIV/00216275:25410/18:39913513 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-319-92007-8_4" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-92007-8_4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-92007-8_4" target="_blank" >10.1007/978-3-319-92007-8_4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spam filtering in social networks using regularized deep neural networks with ensemble learning
Popis výsledku v původním jazyce
Spam filtering in social networks is increasingly important owing to the rapid growth of social network user base. Sophisticated spam filters must be developed to deal with this complex problem. Traditional machine learning approaches such as neural networks, support vector machine and Naïve Bayes classifiers are not effective enough to process and utilize complex features present in high-dimensional data on social network spam. To overcome this problem, here we propose a novel approach to social network spam filtering. The approach uses ensemble learning techniques with regularized deep neural networks as base learners. We demonstrate that this approach is effective for social network spam filtering on a benchmark dataset in terms of accuracy and area under ROC. In addition, solid performance is achieved in terms of false negative and false positive rates. We also show that the proposed approach outperforms other popular algorithms used in spam filtering, such as decision trees, Naïve Bayes, artificial immune systems, support vector machines, etc.
Název v anglickém jazyce
Spam filtering in social networks using regularized deep neural networks with ensemble learning
Popis výsledku anglicky
Spam filtering in social networks is increasingly important owing to the rapid growth of social network user base. Sophisticated spam filters must be developed to deal with this complex problem. Traditional machine learning approaches such as neural networks, support vector machine and Naïve Bayes classifiers are not effective enough to process and utilize complex features present in high-dimensional data on social network spam. To overcome this problem, here we propose a novel approach to social network spam filtering. The approach uses ensemble learning techniques with regularized deep neural networks as base learners. We demonstrate that this approach is effective for social network spam filtering on a benchmark dataset in terms of accuracy and area under ROC. In addition, solid performance is achieved in terms of false negative and false positive rates. We also show that the proposed approach outperforms other popular algorithms used in spam filtering, such as decision trees, Naïve Bayes, artificial immune systems, support vector machines, etc.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IFIP Advances in Information and Communication Technology. Vol. 519
ISBN
978-3-319-92006-1
ISSN
1868-4238
e-ISSN
neuvedeno
Počet stran výsledku
11
Strana od-do
38-48
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Rhodos
Datum konání akce
25. 5. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—