Interpretable Fuzzy Rule-Based Systems for Detecting Financial Statement Fraud
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F19%3A39914916" target="_blank" >RIV/00216275:25410/19:39914916 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-19823-7_36" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-19823-7_36</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-19823-7_36" target="_blank" >10.1007/978-3-030-19823-7_36</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interpretable Fuzzy Rule-Based Systems for Detecting Financial Statement Fraud
Popis výsledku v původním jazyce
Systems for detecting financial statement frauds have attracted considerable interest in computational intelligence research. Diverse classification methods have been employed to perform automatic detection of fraudulent companies. However, previous research has aimed to develop highly accurate detection systems, while neglecting the interpretability of those systems. Here we propose a novel fuzzy rule-based detection system that integrates a feature selection component and rule extraction to achieve a highly interpretable system in terms of rule complexity and granularity. Specifically, we use a genetic feature selection to remove irrelevant attributes and then we perform a comparative analysis of state-of-the-art fuzzy rule-based systems, including FURIA and evolutionary fuzzy rule-based systems. Here, we show that using such systems leads not only to competitive accuracy but also to desirable interpretability. This finding has important implications for auditors and other users of the detection systems of financial statement fraud.
Název v anglickém jazyce
Interpretable Fuzzy Rule-Based Systems for Detecting Financial Statement Fraud
Popis výsledku anglicky
Systems for detecting financial statement frauds have attracted considerable interest in computational intelligence research. Diverse classification methods have been employed to perform automatic detection of fraudulent companies. However, previous research has aimed to develop highly accurate detection systems, while neglecting the interpretability of those systems. Here we propose a novel fuzzy rule-based detection system that integrates a feature selection component and rule extraction to achieve a highly interpretable system in terms of rule complexity and granularity. Specifically, we use a genetic feature selection to remove irrelevant attributes and then we perform a comparative analysis of state-of-the-art fuzzy rule-based systems, including FURIA and evolutionary fuzzy rule-based systems. Here, we show that using such systems leads not only to competitive accuracy but also to desirable interpretability. This finding has important implications for auditors and other users of the detection systems of financial statement fraud.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-15498S" target="_blank" >GA19-15498S: Modelování emocí ve verbální a neverbální manažerské komunikaci pro predikci podnikových finančních rizik</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IFIP Advances in Information and Communication Technology. Vol. 559
ISBN
978-3-030-19822-0
ISSN
1868-4238
e-ISSN
—
Počet stran výsledku
12
Strana od-do
425-436
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
Hersonissos
Datum konání akce
24. 5. 2019
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—