An Optimized Hybrid Forecasting Model and Its Application to Air Pollution Concentration
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F20%3A39916666" target="_blank" >RIV/00216275:25410/20:39916666 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s13369-020-04572-w" target="_blank" >https://link.springer.com/article/10.1007/s13369-020-04572-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13369-020-04572-w" target="_blank" >10.1007/s13369-020-04572-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Optimized Hybrid Forecasting Model and Its Application to Air Pollution Concentration
Popis výsledku v původním jazyce
Previous literature suggested that intuitionistic fuzzy inference systems (IFISs) can offer a good forecasting model and intimately linked to the notion of uncertain parameters. However, their performance can be severely degraded by the presence of missing data and less regulated local optima. This study proposes a hybrid IFIS model by assimilating the probabilistic principal component analysis (PPCA) to enhance preprocessing data and particle swarm optimization (PSO) algorithm to optimize the performance of the forecasting model. The main purpose of the PPCA is to diminish outliers affected by defective values and missing values within experimental data. The PSO optimization algorithm is used to tune the parameters of IFIS and thus elevate the prediction performance of the IFIS. Extensive experimental data on meteorological parameters that are recognized as driving factors of tropospheric pollution were employed to study the benefits of the proposed hybrid model. Comparable three error measures are presented to check the performance of the proposed model against the other models. The error analysis result clearly highlights that the proposed hybrid model is performed better compared to the other IFIS-based models and the well-known existing models.
Název v anglickém jazyce
An Optimized Hybrid Forecasting Model and Its Application to Air Pollution Concentration
Popis výsledku anglicky
Previous literature suggested that intuitionistic fuzzy inference systems (IFISs) can offer a good forecasting model and intimately linked to the notion of uncertain parameters. However, their performance can be severely degraded by the presence of missing data and less regulated local optima. This study proposes a hybrid IFIS model by assimilating the probabilistic principal component analysis (PPCA) to enhance preprocessing data and particle swarm optimization (PSO) algorithm to optimize the performance of the forecasting model. The main purpose of the PPCA is to diminish outliers affected by defective values and missing values within experimental data. The PSO optimization algorithm is used to tune the parameters of IFIS and thus elevate the prediction performance of the IFIS. Extensive experimental data on meteorological parameters that are recognized as driving factors of tropospheric pollution were employed to study the benefits of the proposed hybrid model. Comparable three error measures are presented to check the performance of the proposed model against the other models. The error analysis result clearly highlights that the proposed hybrid model is performed better compared to the other IFIS-based models and the well-known existing models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Arabian Journal for Science and Engineering
ISSN
2193-567X
e-ISSN
—
Svazek periodika
45
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
23
Strana od-do
9953-9975
Kód UT WoS článku
000531765700003
EID výsledku v databázi Scopus
2-s2.0-85084470151