Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An Optimized Hybrid Forecasting Model and Its Application to Air Pollution Concentration

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F20%3A39916666" target="_blank" >RIV/00216275:25410/20:39916666 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s13369-020-04572-w" target="_blank" >https://link.springer.com/article/10.1007/s13369-020-04572-w</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s13369-020-04572-w" target="_blank" >10.1007/s13369-020-04572-w</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An Optimized Hybrid Forecasting Model and Its Application to Air Pollution Concentration

  • Popis výsledku v původním jazyce

    Previous literature suggested that intuitionistic fuzzy inference systems (IFISs) can offer a good forecasting model and intimately linked to the notion of uncertain parameters. However, their performance can be severely degraded by the presence of missing data and less regulated local optima. This study proposes a hybrid IFIS model by assimilating the probabilistic principal component analysis (PPCA) to enhance preprocessing data and particle swarm optimization (PSO) algorithm to optimize the performance of the forecasting model. The main purpose of the PPCA is to diminish outliers affected by defective values and missing values within experimental data. The PSO optimization algorithm is used to tune the parameters of IFIS and thus elevate the prediction performance of the IFIS. Extensive experimental data on meteorological parameters that are recognized as driving factors of tropospheric pollution were employed to study the benefits of the proposed hybrid model. Comparable three error measures are presented to check the performance of the proposed model against the other models. The error analysis result clearly highlights that the proposed hybrid model is performed better compared to the other IFIS-based models and the well-known existing models.

  • Název v anglickém jazyce

    An Optimized Hybrid Forecasting Model and Its Application to Air Pollution Concentration

  • Popis výsledku anglicky

    Previous literature suggested that intuitionistic fuzzy inference systems (IFISs) can offer a good forecasting model and intimately linked to the notion of uncertain parameters. However, their performance can be severely degraded by the presence of missing data and less regulated local optima. This study proposes a hybrid IFIS model by assimilating the probabilistic principal component analysis (PPCA) to enhance preprocessing data and particle swarm optimization (PSO) algorithm to optimize the performance of the forecasting model. The main purpose of the PPCA is to diminish outliers affected by defective values and missing values within experimental data. The PSO optimization algorithm is used to tune the parameters of IFIS and thus elevate the prediction performance of the IFIS. Extensive experimental data on meteorological parameters that are recognized as driving factors of tropospheric pollution were employed to study the benefits of the proposed hybrid model. Comparable three error measures are presented to check the performance of the proposed model against the other models. The error analysis result clearly highlights that the proposed hybrid model is performed better compared to the other IFIS-based models and the well-known existing models.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Arabian Journal for Science and Engineering

  • ISSN

    2193-567X

  • e-ISSN

  • Svazek periodika

    45

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    23

  • Strana od-do

    9953-9975

  • Kód UT WoS článku

    000531765700003

  • EID výsledku v databázi Scopus

    2-s2.0-85084470151