Intuitionistic fuzzy neural network for time series forecasting - The case of metal prices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F21%3A39917741" target="_blank" >RIV/00216275:25410/21:39917741 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-79150-6_33" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-79150-6_33</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-79150-6_33" target="_blank" >10.1007/978-3-030-79150-6_33</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Intuitionistic fuzzy neural network for time series forecasting - The case of metal prices
Popis výsledku v původním jazyce
Forecasting time series is an important problem addressed for years. Despite that, it still raises an active interest of researchers. The main issue related to that problem is the inherent uncertainty in data which is hard to be represented in the form of a forecasting model. To solve that issue, a fuzzy model of time series was proposed. Recent developments of that model extend the level of uncertainty involved in data using intuitionistic fuzzy sets. It is, however, worth noting that additional fuzziness exhibits nonlinear behavior. To cope with that issue, we propose a time series model that represents both high uncertainty and non-linearity involved in the data. Specifically, we propose a forecasting model integrating intuitionistic fuzzy sets with neural networks for predicting metal prices. We validate our approach using five financial multivariate time series. The results are compared with those produced by state-of-the-art fuzzy time series models. Thus, we provide solid evidence of high effectiveness of our approach for both one- and five-day-ahead forecasting horizons.
Název v anglickém jazyce
Intuitionistic fuzzy neural network for time series forecasting - The case of metal prices
Popis výsledku anglicky
Forecasting time series is an important problem addressed for years. Despite that, it still raises an active interest of researchers. The main issue related to that problem is the inherent uncertainty in data which is hard to be represented in the form of a forecasting model. To solve that issue, a fuzzy model of time series was proposed. Recent developments of that model extend the level of uncertainty involved in data using intuitionistic fuzzy sets. It is, however, worth noting that additional fuzziness exhibits nonlinear behavior. To cope with that issue, we propose a time series model that represents both high uncertainty and non-linearity involved in the data. Specifically, we propose a forecasting model integrating intuitionistic fuzzy sets with neural networks for predicting metal prices. We validate our approach using five financial multivariate time series. The results are compared with those produced by state-of-the-art fuzzy time series models. Thus, we provide solid evidence of high effectiveness of our approach for both one- and five-day-ahead forecasting horizons.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-15498S" target="_blank" >GA19-15498S: Modelování emocí ve verbální a neverbální manažerské komunikaci pro predikci podnikových finančních rizik</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IFIP Advances in Information and Communication Technology. Vol. 627
ISBN
978-3-030-79149-0
ISSN
1868-4238
e-ISSN
1868-422X
Počet stran výsledku
12
Strana od-do
411-422
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Cham
Místo konání akce
ONLINE
Datum konání akce
25. 6. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—