Implementation of standards into predictors of financial stability
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F22%3A39919052" target="_blank" >RIV/00216275:25410/22:39919052 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.tandfonline.com/doi/full/10.1080/1331677X.2022.2053785" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/1331677X.2022.2053785</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/1331677X.2022.2053785" target="_blank" >10.1080/1331677X.2022.2053785</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Implementation of standards into predictors of financial stability
Popis výsledku v původním jazyce
This article proposes a methodology for modifying bankruptcymodels. The authors focused on the role of partial predictors inpredicting companys bankruptcy. According to the authors, it is necessary to analyse the anomalies that occur in companies that are losing financial stability. It has been hypothesized that some anomalies in the form of extreme values may deviate the overall final value of the model to such an extent that they lead to an erroneous evaluation of the company by the bankruptcy model. As a result, companies in bankruptcy may be incorrectly classified as 'financially stable' or, conversely, financially sound companies with certain extreme values could be mistaken for companies in bankruptcy. To verify the hypothesis, the authors analysed the probability distribution of partial predictors of the bankruptcy Model 1 on a test and verification sample of more than 1,100 companies. Limits were set to eliminate extreme values and, as a result, the accuracy of the model has been increased. The introduction of limits has increased the accuracy of the model, especially in bankruptcy prediction. For bankruptcies, the accuracy increased from 85.82% to 88.65% for the test sample and from 84.00% to 88.00% for the verification sample.
Název v anglickém jazyce
Implementation of standards into predictors of financial stability
Popis výsledku anglicky
This article proposes a methodology for modifying bankruptcymodels. The authors focused on the role of partial predictors inpredicting companys bankruptcy. According to the authors, it is necessary to analyse the anomalies that occur in companies that are losing financial stability. It has been hypothesized that some anomalies in the form of extreme values may deviate the overall final value of the model to such an extent that they lead to an erroneous evaluation of the company by the bankruptcy model. As a result, companies in bankruptcy may be incorrectly classified as 'financially stable' or, conversely, financially sound companies with certain extreme values could be mistaken for companies in bankruptcy. To verify the hypothesis, the authors analysed the probability distribution of partial predictors of the bankruptcy Model 1 on a test and verification sample of more than 1,100 companies. Limits were set to eliminate extreme values and, as a result, the accuracy of the model has been increased. The introduction of limits has increased the accuracy of the model, especially in bankruptcy prediction. For bankruptcies, the accuracy increased from 85.82% to 88.65% for the test sample and from 84.00% to 88.00% for the verification sample.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Economic Research-Ekonomska Istrazivanja
ISSN
1331-677X
e-ISSN
1848-9664
Svazek periodika
35
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
6884-6900
Kód UT WoS článku
000773793400001
EID výsledku v databázi Scopus
2-s2.0-85127258361