Deep Learning For Cyber Security in the Internet of Things (IoT) Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F23%3A39920282" target="_blank" >RIV/00216275:25410/23:39920282 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.35011/IDIMT-2023-391" target="_blank" >http://dx.doi.org/10.35011/IDIMT-2023-391</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.35011/IDIMT-2023-391" target="_blank" >10.35011/IDIMT-2023-391</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep Learning For Cyber Security in the Internet of Things (IoT) Network
Popis výsledku v původním jazyce
The Internet of Things (IoT) is a swiftly evolving paradigm having the potential to transform thephysical interaction between individuals and organizations. IoT has applications in multiple fieldssuch as healthcare, education, resource management, and information processing to name a few.Many organizations rely greatly on technology, and most are changing their process into intelligentor smart solutions. Moreover, these networks are wireless, self-configuring, do not need preexisting infrastructure, and have a large unpredictable node movement; security becomes one of themost crucial concerns that need to be addressed. In this paper, we proposed an intrusion preventionmethod that uses a federated deep learning-based framework. A real IoT traffic dataset will be usedto train the state-of-the-art graph neural network algorithm. A comparison will be carried outbased on different experimental results. Finally, this work contributes to the security of IoTnetworks through the implementation of effective tools/techniques for timely IoT attackclassification and mitigation.
Název v anglickém jazyce
Deep Learning For Cyber Security in the Internet of Things (IoT) Network
Popis výsledku anglicky
The Internet of Things (IoT) is a swiftly evolving paradigm having the potential to transform thephysical interaction between individuals and organizations. IoT has applications in multiple fieldssuch as healthcare, education, resource management, and information processing to name a few.Many organizations rely greatly on technology, and most are changing their process into intelligentor smart solutions. Moreover, these networks are wireless, self-configuring, do not need preexisting infrastructure, and have a large unpredictable node movement; security becomes one of themost crucial concerns that need to be addressed. In this paper, we proposed an intrusion preventionmethod that uses a federated deep learning-based framework. A real IoT traffic dataset will be usedto train the state-of-the-art graph neural network algorithm. A comparison will be carried outbased on different experimental results. Finally, this work contributes to the security of IoTnetworks through the implementation of effective tools/techniques for timely IoT attackclassification and mitigation.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IDIMT-2023 : New Challenges for ICT and Management : 31st Interdisciplinary Information Management
ISBN
978-3-99151-176-2
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
391-398
Název nakladatele
Trauner Verlag
Místo vydání
Linz
Místo konání akce
Hradec Králové
Datum konání akce
6. 9. 2023
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—