Machine Learning Based Classification of Wear Debris
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25510%2F12%3A39894538" target="_blank" >RIV/00216275:25510/12:39894538 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine Learning Based Classification of Wear Debris
Popis výsledku v původním jazyce
The wear debris of various engineering equipment (such as combustion engines, gearboxes, etc.) consists of particles of metal which can be obtained in lubricants used in such machine parts. The analysis the the wear particles is very important for earlydetection and prevention of failures in engineering equipment. The analysis is often done through the classi cation of individual wear particles obtained by analytical ferrography. In this paper, we present a study of feature extraction methods for a classi cation of the wear particles based on visual similarity (using supervised machine learning). The fi rst contribution of the paper is the comparison of nine selected feature types in the context of three state-of-the-art learning models. The second contribution is the large public database of binary images of particles which can be used for further experiments. The paper describes the dataset, methods of classi cation, demonstrates experimental results, and draws conclusions.
Název v anglickém jazyce
Machine Learning Based Classification of Wear Debris
Popis výsledku anglicky
The wear debris of various engineering equipment (such as combustion engines, gearboxes, etc.) consists of particles of metal which can be obtained in lubricants used in such machine parts. The analysis the the wear particles is very important for earlydetection and prevention of failures in engineering equipment. The analysis is often done through the classi cation of individual wear particles obtained by analytical ferrography. In this paper, we present a study of feature extraction methods for a classi cation of the wear particles based on visual similarity (using supervised machine learning). The fi rst contribution of the paper is the comparison of nine selected feature types in the context of three state-of-the-art learning models. The second contribution is the large public database of binary images of particles which can be used for further experiments. The paper describes the dataset, methods of classi cation, demonstrates experimental results, and draws conclusions.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Machine Graphics and Vision
ISSN
1230-0535
e-ISSN
—
Svazek periodika
2012
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—