Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Possition of Eigenvalues in the Gaussian Complex Plane Depending on the Change of the Coefficients of the Homogeneous Linear Differential Equation in the Transport Application Using Matlab

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25510%2F22%3A39919547" target="_blank" >RIV/00216275:25510/22:39919547 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.ebooks.ktu.lt/eb/1611/transport-means-2022-part-ii-proceedings-of-the-26th-international-scientific-conference/?fbclid=IwAR29HZfxoaFEizUavsQ7fFjJx3whiOSS2oBVinfXJDmlRlN4h9oX6BQbkj8" target="_blank" >https://www.ebooks.ktu.lt/eb/1611/transport-means-2022-part-ii-proceedings-of-the-26th-international-scientific-conference/?fbclid=IwAR29HZfxoaFEizUavsQ7fFjJx3whiOSS2oBVinfXJDmlRlN4h9oX6BQbkj8</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Possition of Eigenvalues in the Gaussian Complex Plane Depending on the Change of the Coefficients of the Homogeneous Linear Differential Equation in the Transport Application Using Matlab

  • Popis výsledku v původním jazyce

    The mathematical solution of vibration of a single-degree-of-freedom dynamical system always leads to the construction and solution of a second-order linear ordinary differential equation with constant coefficients. The coefficients of this equation correspond to the mass of the body, the damping coefficient of the damper, and the stiffness of the spring in a given system. The paper examines how changes of these coefficients influence the position of eigenvalues in the Gaussian complex plane. For the eigenvalues of the second-order homogeneous linear differential equation, it is derived and proved that the product of their distances from the origin of the Gaussian complex plane is constant and equal to the numerical value of the natural circular frequency of the corresponding mass-damper-spring system. It is further shown and proved that these eigenvalues follow the rules of conformal mapping of circular inversion with respect to a reference circle with its center at the origin of the Gaussian complex plane and a radius equal to the square root of the natural circular frequency of the corresponding system. Furthermore, third and higher order homogeneous linear differential equations are also investigated and a similar property is derived and proved, namely that the product of the absolute values of the eigenvalues is linearly dependent on the coefficients of the differential equation. The Matlab system environment is used for modeling.

  • Název v anglickém jazyce

    The Possition of Eigenvalues in the Gaussian Complex Plane Depending on the Change of the Coefficients of the Homogeneous Linear Differential Equation in the Transport Application Using Matlab

  • Popis výsledku anglicky

    The mathematical solution of vibration of a single-degree-of-freedom dynamical system always leads to the construction and solution of a second-order linear ordinary differential equation with constant coefficients. The coefficients of this equation correspond to the mass of the body, the damping coefficient of the damper, and the stiffness of the spring in a given system. The paper examines how changes of these coefficients influence the position of eigenvalues in the Gaussian complex plane. For the eigenvalues of the second-order homogeneous linear differential equation, it is derived and proved that the product of their distances from the origin of the Gaussian complex plane is constant and equal to the numerical value of the natural circular frequency of the corresponding mass-damper-spring system. It is further shown and proved that these eigenvalues follow the rules of conformal mapping of circular inversion with respect to a reference circle with its center at the origin of the Gaussian complex plane and a radius equal to the square root of the natural circular frequency of the corresponding system. Furthermore, third and higher order homogeneous linear differential equations are also investigated and a similar property is derived and proved, namely that the product of the absolute values of the eigenvalues is linearly dependent on the coefficients of the differential equation. The Matlab system environment is used for modeling.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Transport Means 2022 : proceedings of the 26th Internationa Scientific Conference

  • ISBN

  • ISSN

    1822-296X

  • e-ISSN

    2351-7034

  • Počet stran výsledku

    6

  • Strana od-do

    968-973

  • Název nakladatele

    Kaunas University of Technology

  • Místo vydání

    Kaunas

  • Místo konání akce

    ONLINE

  • Datum konání akce

    5. 10. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku