The Possition of Eigenvalues in the Gaussian Complex Plane Depending on the Change of the Coefficients of the Homogeneous Linear Differential Equation in the Transport Application Using Matlab
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25510%2F22%3A39919547" target="_blank" >RIV/00216275:25510/22:39919547 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.ebooks.ktu.lt/eb/1611/transport-means-2022-part-ii-proceedings-of-the-26th-international-scientific-conference/?fbclid=IwAR29HZfxoaFEizUavsQ7fFjJx3whiOSS2oBVinfXJDmlRlN4h9oX6BQbkj8" target="_blank" >https://www.ebooks.ktu.lt/eb/1611/transport-means-2022-part-ii-proceedings-of-the-26th-international-scientific-conference/?fbclid=IwAR29HZfxoaFEizUavsQ7fFjJx3whiOSS2oBVinfXJDmlRlN4h9oX6BQbkj8</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Possition of Eigenvalues in the Gaussian Complex Plane Depending on the Change of the Coefficients of the Homogeneous Linear Differential Equation in the Transport Application Using Matlab
Popis výsledku v původním jazyce
The mathematical solution of vibration of a single-degree-of-freedom dynamical system always leads to the construction and solution of a second-order linear ordinary differential equation with constant coefficients. The coefficients of this equation correspond to the mass of the body, the damping coefficient of the damper, and the stiffness of the spring in a given system. The paper examines how changes of these coefficients influence the position of eigenvalues in the Gaussian complex plane. For the eigenvalues of the second-order homogeneous linear differential equation, it is derived and proved that the product of their distances from the origin of the Gaussian complex plane is constant and equal to the numerical value of the natural circular frequency of the corresponding mass-damper-spring system. It is further shown and proved that these eigenvalues follow the rules of conformal mapping of circular inversion with respect to a reference circle with its center at the origin of the Gaussian complex plane and a radius equal to the square root of the natural circular frequency of the corresponding system. Furthermore, third and higher order homogeneous linear differential equations are also investigated and a similar property is derived and proved, namely that the product of the absolute values of the eigenvalues is linearly dependent on the coefficients of the differential equation. The Matlab system environment is used for modeling.
Název v anglickém jazyce
The Possition of Eigenvalues in the Gaussian Complex Plane Depending on the Change of the Coefficients of the Homogeneous Linear Differential Equation in the Transport Application Using Matlab
Popis výsledku anglicky
The mathematical solution of vibration of a single-degree-of-freedom dynamical system always leads to the construction and solution of a second-order linear ordinary differential equation with constant coefficients. The coefficients of this equation correspond to the mass of the body, the damping coefficient of the damper, and the stiffness of the spring in a given system. The paper examines how changes of these coefficients influence the position of eigenvalues in the Gaussian complex plane. For the eigenvalues of the second-order homogeneous linear differential equation, it is derived and proved that the product of their distances from the origin of the Gaussian complex plane is constant and equal to the numerical value of the natural circular frequency of the corresponding mass-damper-spring system. It is further shown and proved that these eigenvalues follow the rules of conformal mapping of circular inversion with respect to a reference circle with its center at the origin of the Gaussian complex plane and a radius equal to the square root of the natural circular frequency of the corresponding system. Furthermore, third and higher order homogeneous linear differential equations are also investigated and a similar property is derived and proved, namely that the product of the absolute values of the eigenvalues is linearly dependent on the coefficients of the differential equation. The Matlab system environment is used for modeling.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Transport Means 2022 : proceedings of the 26th Internationa Scientific Conference
ISBN
—
ISSN
1822-296X
e-ISSN
2351-7034
Počet stran výsledku
6
Strana od-do
968-973
Název nakladatele
Kaunas University of Technology
Místo vydání
Kaunas
Místo konání akce
ONLINE
Datum konání akce
5. 10. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—