A Probabilistic Estimation for Dynamic Thermal Rating of Transmission Lines
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F16%3A39902603" target="_blank" >RIV/00216275:25530/16:39902603 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Probabilistic Estimation for Dynamic Thermal Rating of Transmission Lines
Popis výsledku v původním jazyce
Dynamic Thermal Line Rating (DTLR) provides actual current-carrying capacity of transmission lines by considering weather conditions perceived to be influential on line thermal capacity. These weather variables include ambient temperature, wind speed, and wind direction. In this paper, a probability technique is adopted to effectively model the existing uncertainties in weather variables. A probability distribution is assigned to each variable to account for the inherent uncertainties in weather data. Monte Carlo Simulation (MCS) technique is then employed to generate different scenarios for relevant weather data. Output of MCS is fed to the IEEE model to obtain the probability distribution of sectional line ampacity estimated at each line span. Next, probability distribution of line ampacity will be calculated as the minimum of the ampacities estimated at each line span. Expected value and related percentiles of line ampacity can be derived from its probability distribution. The proposed approach would enable system operators to make decisions on DTLR accounting for risk and degree of uncertainty that power utilities are willing to accept.
Název v anglickém jazyce
A Probabilistic Estimation for Dynamic Thermal Rating of Transmission Lines
Popis výsledku anglicky
Dynamic Thermal Line Rating (DTLR) provides actual current-carrying capacity of transmission lines by considering weather conditions perceived to be influential on line thermal capacity. These weather variables include ambient temperature, wind speed, and wind direction. In this paper, a probability technique is adopted to effectively model the existing uncertainties in weather variables. A probability distribution is assigned to each variable to account for the inherent uncertainties in weather data. Monte Carlo Simulation (MCS) technique is then employed to generate different scenarios for relevant weather data. Output of MCS is fed to the IEEE model to obtain the probability distribution of sectional line ampacity estimated at each line span. Next, probability distribution of line ampacity will be calculated as the minimum of the ampacities estimated at each line span. Expected value and related percentiles of line ampacity can be derived from its probability distribution. The proposed approach would enable system operators to make decisions on DTLR accounting for risk and degree of uncertainty that power utilities are willing to accept.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC) : proceedings
ISBN
978-1-5090-2320-2
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
IEEE (Institute of Electrical and Electronics Engineers)
Místo vydání
New York
Místo konání akce
Florencie
Datum konání akce
7. 6. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000387085800420