Reduced order modelling and predictive control of multivariable nonlinear process
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F18%3A39913530" target="_blank" >RIV/00216275:25530/18:39913530 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s12046-018-0798-x" target="_blank" >http://dx.doi.org/10.1007/s12046-018-0798-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12046-018-0798-x" target="_blank" >10.1007/s12046-018-0798-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reduced order modelling and predictive control of multivariable nonlinear process
Popis výsledku v původním jazyce
In this paper, an efficient model-predictive control strategy that can be applied to complex multivariable process is presented. A reduced order generalized predictive algorithm is proposed for online applications with reduction in complexity and time elapsed. The complex multivariable process considered in this work is a binary distillation column. The reduced order model is developed with a recently proposed hybrid algorithm known as Clustering Dominant Pole Algorithm and is able to compute the full set of dominant poles and their cluster centre efficiently. The controller calculates the optimal control action based on the future reference signals, current state and constraints on manipulated and controlled variables for a high-order dynamic simulated model of nonlinear multivariable binary distillation column process. The predictive control algorithm uses controlled auto-regressive integrated moving average model. The performance of constraint generalized predictive control scheme is found to be superior to that of the conventional PID controller in terms of overshoot, settling time and performance indices, mainly ISE, IAE and MSE.
Název v anglickém jazyce
Reduced order modelling and predictive control of multivariable nonlinear process
Popis výsledku anglicky
In this paper, an efficient model-predictive control strategy that can be applied to complex multivariable process is presented. A reduced order generalized predictive algorithm is proposed for online applications with reduction in complexity and time elapsed. The complex multivariable process considered in this work is a binary distillation column. The reduced order model is developed with a recently proposed hybrid algorithm known as Clustering Dominant Pole Algorithm and is able to compute the full set of dominant poles and their cluster centre efficiently. The controller calculates the optimal control action based on the future reference signals, current state and constraints on manipulated and controlled variables for a high-order dynamic simulated model of nonlinear multivariable binary distillation column process. The predictive control algorithm uses controlled auto-regressive integrated moving average model. The performance of constraint generalized predictive control scheme is found to be superior to that of the conventional PID controller in terms of overshoot, settling time and performance indices, mainly ISE, IAE and MSE.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sadhana-Academy proceedings in engineering sciences
ISSN
0256-2499
e-ISSN
—
Svazek periodika
43
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
IN - Indická republika
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
000429178800005
EID výsledku v databázi Scopus
—