Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Using Simple Genetic Algorithm for a Hand Contour Classification: An Experimental Study

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F20%3A39916054" target="_blank" >RIV/00216275:25530/20:39916054 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-51971-1_8" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-51971-1_8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-51971-1_8" target="_blank" >10.1007/978-3-030-51971-1_8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Using Simple Genetic Algorithm for a Hand Contour Classification: An Experimental Study

  • Popis výsledku v původním jazyce

    The area of biometric systems has passed through considerable advancement in the past two decades. Supporting of security provision plays a key role in many branches. There are large amount of the biometrical markers which can be utilized in the person identification process. One of the possible ways is a method which uses a hand shape contour classification. The presented paper solves the problem of hand contours classification with use of a Simple Genetic Algorithm (SGA). The foundations of the SGA were established in 1950’s, but an improvement process of the SGA continues. The hand contour for the classification purposes is obtained from a color image from a biometric scanner. The biometric scanner has fixed pegs to hold the hand, or the hand can be freely placed on the scanning area. A core of the proposed estimator is an Iterative Closes Point algorithm which enables matching of the two point-clouds and expressing their dissimilarity regarding the elected metrics. In the experimental section, a large number of experiments were performed with a different setting of the SGA working parameters. Beside the capability to correctly align/match the hand contours, selected standard benchmark tests were performed with a corresponding number of dimensions. The presented estimator solves the thee-dimensional optimization task. Based on experimental results, it was proven that in the case of identical contours the proposed method, which utilizes the SGA optimizer, provides very accurate results.

  • Název v anglickém jazyce

    Using Simple Genetic Algorithm for a Hand Contour Classification: An Experimental Study

  • Popis výsledku anglicky

    The area of biometric systems has passed through considerable advancement in the past two decades. Supporting of security provision plays a key role in many branches. There are large amount of the biometrical markers which can be utilized in the person identification process. One of the possible ways is a method which uses a hand shape contour classification. The presented paper solves the problem of hand contours classification with use of a Simple Genetic Algorithm (SGA). The foundations of the SGA were established in 1950’s, but an improvement process of the SGA continues. The hand contour for the classification purposes is obtained from a color image from a biometric scanner. The biometric scanner has fixed pegs to hold the hand, or the hand can be freely placed on the scanning area. A core of the proposed estimator is an Iterative Closes Point algorithm which enables matching of the two point-clouds and expressing their dissimilarity regarding the elected metrics. In the experimental section, a large number of experiments were performed with a different setting of the SGA working parameters. Beside the capability to correctly align/match the hand contours, selected standard benchmark tests were performed with a corresponding number of dimensions. The presented estimator solves the thee-dimensional optimization task. Based on experimental results, it was proven that in the case of identical contours the proposed method, which utilizes the SGA optimizer, provides very accurate results.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Artificial Intelligence and Bioinspired Computational Methods : Proceedings of the 9th Computer Science On-line Conference 2020, Vol. 2

  • ISBN

    978-3-030-51970-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    16

  • Strana od-do

    93-109

  • Název nakladatele

    Springer Nature Switzerland AG

  • Místo vydání

    Cham

  • Místo konání akce

    online

  • Datum konání akce

    23. 4. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku