Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

RGB Images Driven Recognition of Grapevine Varieties

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F20%3A39916809" target="_blank" >RIV/00216275:25530/20:39916809 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-3-030-57802-2_21" target="_blank" >http://dx.doi.org/10.1007/978-3-030-57802-2_21</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-57802-2_21" target="_blank" >10.1007/978-3-030-57802-2_21</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    RGB Images Driven Recognition of Grapevine Varieties

  • Popis výsledku v původním jazyce

    We present a grapevine variety recognition system based on a densely connected convolutional network. The proposed solution is aimed as a data processing part of an affordable sensor for selective harvesters. The system classifies size normalized RGB images according to varieties of grapes captured in the images. We train and evaluate the system on in-field images of ripe grapes captured without any artificial lighting, in a direction of sunshine likewise in the opposite direction. A dataset created for this purpose consists of 7200 images classified into 8 categories. The system distinguishes among seven grapevine varieties and background, where four and three varieties have red and green grapes, respectively. Its average per-class classification accuracy is at 98.10% and 97.47% for red and green grapes, respectively. The system also well differentiates grapes from background. Its overall average per-class accuracy is over 98%. The evaluation results show that conventional cameras in combination with the proposed system allow construction of affordable automatic selective harvesters.

  • Název v anglickém jazyce

    RGB Images Driven Recognition of Grapevine Varieties

  • Popis výsledku anglicky

    We present a grapevine variety recognition system based on a densely connected convolutional network. The proposed solution is aimed as a data processing part of an affordable sensor for selective harvesters. The system classifies size normalized RGB images according to varieties of grapes captured in the images. We train and evaluate the system on in-field images of ripe grapes captured without any artificial lighting, in a direction of sunshine likewise in the opposite direction. A dataset created for this purpose consists of 7200 images classified into 8 categories. The system distinguishes among seven grapevine varieties and background, where four and three varieties have red and green grapes, respectively. Its average per-class classification accuracy is at 98.10% and 97.47% for red and green grapes, respectively. The system also well differentiates grapes from background. Its overall average per-class accuracy is over 98%. The evaluation results show that conventional cameras in combination with the proposed system allow construction of affordable automatic selective harvesters.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF17_049%2F0008394" target="_blank" >EF17_049/0008394: Spolupráce Univerzity Pardubice a aplikační sféry v aplikačně orientovaném výzkumu lokačních, detekčních a simulačních systémů pro dopravní a přepravní procesy (PosiTrans)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020)

  • ISBN

    978-3-030-57801-5

  • ISSN

    2194-5357

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    216-225

  • Název nakladatele

    Springer Nature Switzerland AG

  • Místo vydání

    Cham

  • Místo konání akce

    Burgos

  • Datum konání akce

    16. 9. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku