Pokročilé metody pro zpracování a zjednodušení cloudu bodů
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F20%3A39917254" target="_blank" >RIV/00216275:25530/20:39917254 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2076-3417/10/10/3340/pdf" target="_blank" >https://www.mdpi.com/2076-3417/10/10/3340/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app10103340" target="_blank" >10.3390/app10103340</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pokročilé metody pro zpracování a zjednodušení cloudu bodů
Popis výsledku v původním jazyce
Nowadays, mobile robot exploration needs a rangefinder to obtain a large number of measurement points to achieve a detailed and precise description of a surrounding area and objects, which is called the point cloud. However, a single point cloud scan does not cover the whole area, so multiple point cloud scans must be acquired and compared together to find the right matching between them in a process called registration method. This method requires further processing and places high demands on memory consumption, especially for small embedded devices in mobile robots. This paper describes a novel method to reduce the burden of processing for multiple point cloud scans. We introduce our approach to preprocess an input point cloud in order to detect planar surfaces, simplify space description, fill gaps in point clouds, and get important space features. All of these processes are achieved by applying advanced image processing methods in combination with the quantization of physical space points. The results show the reliability of our approach to detect close parallel walls with suitable parameter settings. More importantly, planar surface detection shows a 99% decrease in necessary descriptive points almost in all cases. This proposed approach is verified on the real indoor point clouds.
Název v anglickém jazyce
Pokročilé metody pro zpracování a zjednodušení cloudu bodů
Popis výsledku anglicky
Nowadays, mobile robot exploration needs a rangefinder to obtain a large number of measurement points to achieve a detailed and precise description of a surrounding area and objects, which is called the point cloud. However, a single point cloud scan does not cover the whole area, so multiple point cloud scans must be acquired and compared together to find the right matching between them in a process called registration method. This method requires further processing and places high demands on memory consumption, especially for small embedded devices in mobile robots. This paper describes a novel method to reduce the burden of processing for multiple point cloud scans. We introduce our approach to preprocess an input point cloud in order to detect planar surfaces, simplify space description, fill gaps in point clouds, and get important space features. All of these processes are achieved by applying advanced image processing methods in combination with the quantization of physical space points. The results show the reliability of our approach to detect close parallel walls with suitable parameter settings. More importantly, planar surface detection shows a 99% decrease in necessary descriptive points almost in all cases. This proposed approach is verified on the real indoor point clouds.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Science - Basel
ISSN
2076-3417
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
26
Strana od-do
—
Kód UT WoS článku
000541440000001
EID výsledku v databázi Scopus
—