Optimization of a Depiction Procedure for an Artificial Intelligence-Based Network Protection System Using a Genetic Algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F21%3A39917325" target="_blank" >RIV/00216275:25530/21:39917325 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2076-3417/11/5/2012" target="_blank" >https://www.mdpi.com/2076-3417/11/5/2012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app11052012" target="_blank" >10.3390/app11052012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimization of a Depiction Procedure for an Artificial Intelligence-Based Network Protection System Using a Genetic Algorithm
Popis výsledku v původním jazyce
The current demand for remote work, remote teaching and video conferencing has brought a surge not only in network traffic, but unfortunately, in the number of attacks as well. Having reliable, safe and secure functionality of various network services has never been more important. Another serious phenomenon that is apparent these days and that must not be discounted is the growing use of artificial intelligence techniques for carrying out network attacks. To combat these attacks, effective protection methods must also utilize artificial intelligence. Hence, we are introducing a specific neural network-based decision procedure that can be considered for application in any flow characteristic-based network-traffic-handling controller. This decision procedure is based on a convolutional neural network that processes the incoming flow characteristics and provides a decision; the procedure can be understood as a firewall rule. The main advantage of this decision procedure is its depiction process, which has the ability to transform the incoming flow characteristics into a graphical structure. Graphical structures are regarded as very efficient data structures for processing by convolutional neural networks. This article's main contribution consists of the development and improvement of the depiction process using a genetic algorithm. The results presented at the end of the article show that the decision procedure using an optimized depiction process brings significant improvements in comparison to previous experiments.
Název v anglickém jazyce
Optimization of a Depiction Procedure for an Artificial Intelligence-Based Network Protection System Using a Genetic Algorithm
Popis výsledku anglicky
The current demand for remote work, remote teaching and video conferencing has brought a surge not only in network traffic, but unfortunately, in the number of attacks as well. Having reliable, safe and secure functionality of various network services has never been more important. Another serious phenomenon that is apparent these days and that must not be discounted is the growing use of artificial intelligence techniques for carrying out network attacks. To combat these attacks, effective protection methods must also utilize artificial intelligence. Hence, we are introducing a specific neural network-based decision procedure that can be considered for application in any flow characteristic-based network-traffic-handling controller. This decision procedure is based on a convolutional neural network that processes the incoming flow characteristics and provides a decision; the procedure can be understood as a firewall rule. The main advantage of this decision procedure is its depiction process, which has the ability to transform the incoming flow characteristics into a graphical structure. Graphical structures are regarded as very efficient data structures for processing by convolutional neural networks. This article's main contribution consists of the development and improvement of the depiction process using a genetic algorithm. The results presented at the end of the article show that the decision procedure using an optimized depiction process brings significant improvements in comparison to previous experiments.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008394" target="_blank" >EF17_049/0008394: Spolupráce Univerzity Pardubice a aplikační sféry v aplikačně orientovaném výzkumu lokačních, detekčních a simulačních systémů pro dopravní a přepravní procesy (PosiTrans)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Science - Basel
ISSN
2076-3417
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
24
Strana od-do
—
Kód UT WoS článku
000627943700001
EID výsledku v databázi Scopus
—