Airspace Object Detection Above the Guarded Area Using Segmentation Neural Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F21%3A39918536" target="_blank" >RIV/00216275:25530/21:39918536 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-89880-9_22" target="_blank" >http://dx.doi.org/10.1007/978-3-030-89880-9_22</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-89880-9_22" target="_blank" >10.1007/978-3-030-89880-9_22</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Airspace Object Detection Above the Guarded Area Using Segmentation Neural Network
Popis výsledku v původním jazyce
With the increasing number of drones and unmanned aerial vehicles (UAVs), more emphasis is placed on guarding of the airspace around private and also public buildings. In this contribution authors are introducing a complex multi-step approach for aerial objects detection. Introduced process is composed of a few consecutive steps, where objects are cropped from original input with use of cropping pattern provided by task of image segmentation. These objects are then classified and evaluated as a threat or not. However, the emphasis here is placed on the segmentation part only. Neural network topology, adopted from U-Net architecture, was proposed. Case study was made and discussed in an effort to cover a large number of possible states. The results of a proposed convolutional neural network architecture were compared with the U-Net architecture. Applying of the convolutional neural network to the task of airspace object detection lead to sufficiently precise results, thanks to which it is possible to assume the possibility of its use in the proposed multi-step detection system in further work.
Název v anglickém jazyce
Airspace Object Detection Above the Guarded Area Using Segmentation Neural Network
Popis výsledku anglicky
With the increasing number of drones and unmanned aerial vehicles (UAVs), more emphasis is placed on guarding of the airspace around private and also public buildings. In this contribution authors are introducing a complex multi-step approach for aerial objects detection. Introduced process is composed of a few consecutive steps, where objects are cropped from original input with use of cropping pattern provided by task of image segmentation. These objects are then classified and evaluated as a threat or not. However, the emphasis here is placed on the segmentation part only. Neural network topology, adopted from U-Net architecture, was proposed. Case study was made and discussed in an effort to cover a large number of possible states. The results of a proposed convolutional neural network architecture were compared with the U-Net architecture. Applying of the convolutional neural network to the task of airspace object detection lead to sufficiently precise results, thanks to which it is possible to assume the possibility of its use in the proposed multi-step detection system in further work.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008394" target="_blank" >EF17_049/0008394: Spolupráce Univerzity Pardubice a aplikační sféry v aplikačně orientovaném výzkumu lokačních, detekčních a simulačních systémů pro dopravní a přepravní procesy (PosiTrans)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Future Technologies Conference (FTC) 2021.Volume 2
ISBN
978-3-030-89879-3
ISSN
2367-3370
e-ISSN
2367-3389
Počet stran výsledku
10
Strana od-do
283-292
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Cham
Místo konání akce
Online
Datum konání akce
28. 10. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—