Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Airspace Object Detection Above the Guarded Area Using Segmentation Neural Network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F21%3A39918536" target="_blank" >RIV/00216275:25530/21:39918536 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-3-030-89880-9_22" target="_blank" >http://dx.doi.org/10.1007/978-3-030-89880-9_22</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-89880-9_22" target="_blank" >10.1007/978-3-030-89880-9_22</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Airspace Object Detection Above the Guarded Area Using Segmentation Neural Network

  • Popis výsledku v původním jazyce

    With the increasing number of drones and unmanned aerial vehicles (UAVs), more emphasis is placed on guarding of the airspace around private and also public buildings. In this contribution authors are introducing a complex multi-step approach for aerial objects detection. Introduced process is composed of a few consecutive steps, where objects are cropped from original input with use of cropping pattern provided by task of image segmentation. These objects are then classified and evaluated as a threat or not. However, the emphasis here is placed on the segmentation part only. Neural network topology, adopted from U-Net architecture, was proposed. Case study was made and discussed in an effort to cover a large number of possible states. The results of a proposed convolutional neural network architecture were compared with the U-Net architecture. Applying of the convolutional neural network to the task of airspace object detection lead to sufficiently precise results, thanks to which it is possible to assume the possibility of its use in the proposed multi-step detection system in further work.

  • Název v anglickém jazyce

    Airspace Object Detection Above the Guarded Area Using Segmentation Neural Network

  • Popis výsledku anglicky

    With the increasing number of drones and unmanned aerial vehicles (UAVs), more emphasis is placed on guarding of the airspace around private and also public buildings. In this contribution authors are introducing a complex multi-step approach for aerial objects detection. Introduced process is composed of a few consecutive steps, where objects are cropped from original input with use of cropping pattern provided by task of image segmentation. These objects are then classified and evaluated as a threat or not. However, the emphasis here is placed on the segmentation part only. Neural network topology, adopted from U-Net architecture, was proposed. Case study was made and discussed in an effort to cover a large number of possible states. The results of a proposed convolutional neural network architecture were compared with the U-Net architecture. Applying of the convolutional neural network to the task of airspace object detection lead to sufficiently precise results, thanks to which it is possible to assume the possibility of its use in the proposed multi-step detection system in further work.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF17_049%2F0008394" target="_blank" >EF17_049/0008394: Spolupráce Univerzity Pardubice a aplikační sféry v aplikačně orientovaném výzkumu lokačních, detekčních a simulačních systémů pro dopravní a přepravní procesy (PosiTrans)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the Future Technologies Conference (FTC) 2021.Volume 2

  • ISBN

    978-3-030-89879-3

  • ISSN

    2367-3370

  • e-ISSN

    2367-3389

  • Počet stran výsledku

    10

  • Strana od-do

    283-292

  • Název nakladatele

    Springer Nature Switzerland AG

  • Místo vydání

    Cham

  • Místo konání akce

    Online

  • Datum konání akce

    28. 10. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku