Two-layer genetic programming
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F22%3A39919541" target="_blank" >RIV/00216275:25530/22:39919541 - isvavai.cz</a>
Výsledek na webu
<a href="http://nnw.cz/doi/2022/NNW.2022.32.013.pdf" target="_blank" >http://nnw.cz/doi/2022/NNW.2022.32.013.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2022.32.013" target="_blank" >10.14311/NNW.2022.32.013</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Two-layer genetic programming
Popis výsledku v původním jazyce
This paper focuses on a two-layer approach to genetic programming algorithm and the improvement of the training process using ensemble learning. Inspired by the performance leap of deep neural networks, the idea of a multilayered approach to genetic programming is proposed to start with two-layered genetic programming. The goal of the paper was to design and implement a twolayer genetic programming algorithm, test its behaviour in the context of symbolic regression on several basic test cases, to reveal the potential to improve the learning process of genetic programming and increase the accuracy of the resulting models. The algorithm works in two layers. In the first layer, it searches for appropriate sub-models describing each segment of the data. In the second layer, it searches for the final model as a non-linear combination of these sub-models. Two-layer genetic programming coupled with ensemble learning techniques on the experiments performed showed the potential for improving the performance of genetic programming.
Název v anglickém jazyce
Two-layer genetic programming
Popis výsledku anglicky
This paper focuses on a two-layer approach to genetic programming algorithm and the improvement of the training process using ensemble learning. Inspired by the performance leap of deep neural networks, the idea of a multilayered approach to genetic programming is proposed to start with two-layered genetic programming. The goal of the paper was to design and implement a twolayer genetic programming algorithm, test its behaviour in the context of symbolic regression on several basic test cases, to reveal the potential to improve the learning process of genetic programming and increase the accuracy of the resulting models. The algorithm works in two layers. In the first layer, it searches for appropriate sub-models describing each segment of the data. In the second layer, it searches for the final model as a non-linear combination of these sub-models. Two-layer genetic programming coupled with ensemble learning techniques on the experiments performed showed the potential for improving the performance of genetic programming.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
2336-4335
Svazek periodika
32
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
17
Strana od-do
215-231
Kód UT WoS článku
000912363100003
EID výsledku v databázi Scopus
—