CSU-Net: Contour Semantic Segmentation Self-Enhancement for Human Head Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F23%3A39920163" target="_blank" >RIV/00216275:25530/23:39920163 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10004558" target="_blank" >https://ieeexplore.ieee.org/document/10004558</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2022.3233419" target="_blank" >10.1109/ACCESS.2022.3233419</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CSU-Net: Contour Semantic Segmentation Self-Enhancement for Human Head Detection
Popis výsledku v původním jazyce
The computer vision community has made tremendous progress in solving a variety of semantic image understanding tasks, such as classification and segmentation. With the advancement of imaging technology and hardware, image semantic segmentation, through the use of deep learning, is among the most common topics which have been worked on in the last decade. However, image semantic segmentation suffers from several drawbacks such as insufficient detection of object boundaries. In this study, we present a new convolutional neural network architecture called CSU-Net that aims to self-enhance the results of semantic segmentation. The proposed model consists of two strongly concatenated encoder-decoder blocks. With this design, we reduced requirements on computing power and memory size to decrease costs and increase the training/prediction speed. This study also demonstrates the advantage of the proposed system for small training data sets. The proposed approach has been implemented on our private dataset, as well as on a publicly available dataset. A comparative analysis was carried out with four popular segmentation models and three other recently introduced architectures to show the efficiency of the proposed system. CSU-Net outperformed the other competing neural networks that we considered for the comparative study. As an example, it succeeded in improving the traditional U-Net result by approximately 50% in mean Intersection over Union (mIoU) for both tested datasets. Based on our experience, the CSU-Net can improve results of semantic segmentation in many applications.
Název v anglickém jazyce
CSU-Net: Contour Semantic Segmentation Self-Enhancement for Human Head Detection
Popis výsledku anglicky
The computer vision community has made tremendous progress in solving a variety of semantic image understanding tasks, such as classification and segmentation. With the advancement of imaging technology and hardware, image semantic segmentation, through the use of deep learning, is among the most common topics which have been worked on in the last decade. However, image semantic segmentation suffers from several drawbacks such as insufficient detection of object boundaries. In this study, we present a new convolutional neural network architecture called CSU-Net that aims to self-enhance the results of semantic segmentation. The proposed model consists of two strongly concatenated encoder-decoder blocks. With this design, we reduced requirements on computing power and memory size to decrease costs and increase the training/prediction speed. This study also demonstrates the advantage of the proposed system for small training data sets. The proposed approach has been implemented on our private dataset, as well as on a publicly available dataset. A comparative analysis was carried out with four popular segmentation models and three other recently introduced architectures to show the efficiency of the proposed system. CSU-Net outperformed the other competing neural networks that we considered for the comparative study. As an example, it succeeded in improving the traditional U-Net result by approximately 50% in mean Intersection over Union (mIoU) for both tested datasets. Based on our experience, the CSU-Net can improve results of semantic segmentation in many applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAIN19100" target="_blank" >LTAIN19100: Vývoj bezkontaktní technologie pro inteligentní ochranu zájmových prostor</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE ACCESS
ISSN
2169-3536
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
987-999
Kód UT WoS článku
000910176700001
EID výsledku v databázi Scopus
2-s2.0-85146237760