Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

CSU-Net: Contour Semantic Segmentation Self-Enhancement for Human Head Detection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F23%3A39920163" target="_blank" >RIV/00216275:25530/23:39920163 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10004558" target="_blank" >https://ieeexplore.ieee.org/document/10004558</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2022.3233419" target="_blank" >10.1109/ACCESS.2022.3233419</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    CSU-Net: Contour Semantic Segmentation Self-Enhancement for Human Head Detection

  • Popis výsledku v původním jazyce

    The computer vision community has made tremendous progress in solving a variety of semantic image understanding tasks, such as classification and segmentation. With the advancement of imaging technology and hardware, image semantic segmentation, through the use of deep learning, is among the most common topics which have been worked on in the last decade. However, image semantic segmentation suffers from several drawbacks such as insufficient detection of object boundaries. In this study, we present a new convolutional neural network architecture called CSU-Net that aims to self-enhance the results of semantic segmentation. The proposed model consists of two strongly concatenated encoder-decoder blocks. With this design, we reduced requirements on computing power and memory size to decrease costs and increase the training/prediction speed. This study also demonstrates the advantage of the proposed system for small training data sets. The proposed approach has been implemented on our private dataset, as well as on a publicly available dataset. A comparative analysis was carried out with four popular segmentation models and three other recently introduced architectures to show the efficiency of the proposed system. CSU-Net outperformed the other competing neural networks that we considered for the comparative study. As an example, it succeeded in improving the traditional U-Net result by approximately 50% in mean Intersection over Union (mIoU) for both tested datasets. Based on our experience, the CSU-Net can improve results of semantic segmentation in many applications.

  • Název v anglickém jazyce

    CSU-Net: Contour Semantic Segmentation Self-Enhancement for Human Head Detection

  • Popis výsledku anglicky

    The computer vision community has made tremendous progress in solving a variety of semantic image understanding tasks, such as classification and segmentation. With the advancement of imaging technology and hardware, image semantic segmentation, through the use of deep learning, is among the most common topics which have been worked on in the last decade. However, image semantic segmentation suffers from several drawbacks such as insufficient detection of object boundaries. In this study, we present a new convolutional neural network architecture called CSU-Net that aims to self-enhance the results of semantic segmentation. The proposed model consists of two strongly concatenated encoder-decoder blocks. With this design, we reduced requirements on computing power and memory size to decrease costs and increase the training/prediction speed. This study also demonstrates the advantage of the proposed system for small training data sets. The proposed approach has been implemented on our private dataset, as well as on a publicly available dataset. A comparative analysis was carried out with four popular segmentation models and three other recently introduced architectures to show the efficiency of the proposed system. CSU-Net outperformed the other competing neural networks that we considered for the comparative study. As an example, it succeeded in improving the traditional U-Net result by approximately 50% in mean Intersection over Union (mIoU) for both tested datasets. Based on our experience, the CSU-Net can improve results of semantic segmentation in many applications.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTAIN19100" target="_blank" >LTAIN19100: Vývoj bezkontaktní technologie pro inteligentní ochranu zájmových prostor</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE ACCESS

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    987-999

  • Kód UT WoS článku

    000910176700001

  • EID výsledku v databázi Scopus

    2-s2.0-85146237760