Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Enhancing Secrecy Performance Using Fountain Codes and NOMA Under Joint Cooperative Jamming Technique and Intelligent Reflective Surface

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F24%3A39922324" target="_blank" >RIV/00216275:25530/24:39922324 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10643049" target="_blank" >https://ieeexplore.ieee.org/document/10643049</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2024.3447531" target="_blank" >10.1109/ACCESS.2024.3447531</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Enhancing Secrecy Performance Using Fountain Codes and NOMA Under Joint Cooperative Jamming Technique and Intelligent Reflective Surface

  • Popis výsledku v původním jazyce

    Ensuring content security and copyright protection is a critical concern in wireless communication networks. Furthermore, the emergence of services demanding high-band width and very low delay such as online Games, extended reality (XR), Metaverses, etc., Non-Orthogonal Multiple Access (NOMA) is a technology with the potential to enhance the spectral efficiency of fifth-generation (5G) wireless network and beyond. Hence, this paper studies a NOMA-based downlink system that employs intelligent reconfigurable surfaces (IRS) and operates in a physical-layer security environment. Our study also incorporates the utilization of Fountain codes (FCs), all while contending with the presence of a malicious eavesdropper. Furthermore, a cooperative jamming technique is employed to degrade the quality of the eavesdropping channel. The main contribution of this paper is to derive precise closed-form expressions of outage probability (OP), energy efficiency (EE), intercept probability (IP), and average secrecy rate (ASR) for the proposed system. We also develop a Deep Neural Network (DNN) model to evaluate OP, IP, ASR and the average number of time slots (ATS). Subsequently, Monte Carlo simulations are presented as a means to validate the theoretical findings. The simulation results yield the following insights: i) Their primary purpose is to validate the analytical formulas. ii) This research significantly contributes to deepening our understanding of IRS-NOMA systems, providing a foundation for future investigations into practical implementations. iii) We investigate the optimal power allocation factors within the IRS-NOMA framework, offering valuable insights into designing IRS-NOMA systems to achieve reliable and secure communication. iv) The results illustrate the superior performance of IRS-NOMA in comparison to the conventional IRS-Orthogonal Multiple Access (OMA) method.

  • Název v anglickém jazyce

    Enhancing Secrecy Performance Using Fountain Codes and NOMA Under Joint Cooperative Jamming Technique and Intelligent Reflective Surface

  • Popis výsledku anglicky

    Ensuring content security and copyright protection is a critical concern in wireless communication networks. Furthermore, the emergence of services demanding high-band width and very low delay such as online Games, extended reality (XR), Metaverses, etc., Non-Orthogonal Multiple Access (NOMA) is a technology with the potential to enhance the spectral efficiency of fifth-generation (5G) wireless network and beyond. Hence, this paper studies a NOMA-based downlink system that employs intelligent reconfigurable surfaces (IRS) and operates in a physical-layer security environment. Our study also incorporates the utilization of Fountain codes (FCs), all while contending with the presence of a malicious eavesdropper. Furthermore, a cooperative jamming technique is employed to degrade the quality of the eavesdropping channel. The main contribution of this paper is to derive precise closed-form expressions of outage probability (OP), energy efficiency (EE), intercept probability (IP), and average secrecy rate (ASR) for the proposed system. We also develop a Deep Neural Network (DNN) model to evaluate OP, IP, ASR and the average number of time slots (ATS). Subsequently, Monte Carlo simulations are presented as a means to validate the theoretical findings. The simulation results yield the following insights: i) Their primary purpose is to validate the analytical formulas. ii) This research significantly contributes to deepening our understanding of IRS-NOMA systems, providing a foundation for future investigations into practical implementations. iii) We investigate the optimal power allocation factors within the IRS-NOMA framework, offering valuable insights into designing IRS-NOMA systems to achieve reliable and secure communication. iv) The results illustrate the superior performance of IRS-NOMA in comparison to the conventional IRS-Orthogonal Multiple Access (OMA) method.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE ACCESS

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    August

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    19

  • Strana od-do

    117399-117417

  • Kód UT WoS článku

    001303286600001

  • EID výsledku v databázi Scopus

    2-s2.0-85201787825