Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Operators approximating partial derivatives at vertices of triangulations by averaging

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F10%3APU88687" target="_blank" >RIV/00216305:26110/10:PU88687 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Operators approximating partial derivatives at vertices of triangulations by averaging

  • Popis výsledku v původním jazyce

    We study the problem of a high-order approximation of the partial derivatives of smooth functions u in the vertices of triangulations under the assumption that the values of u are known in the vertices of the given triangulation only. An operator A computing these approximations is said to be consistent when, for every vertex a, the approximations A(u) (a) are equal to the partial derivative of u at a for all polynomials u of degree less than or equal to two. We characterize all consistent averaging operators and show that, in general, there exists no consistent approximation of the gradient of a smooth function u by averaging.

  • Název v anglickém jazyce

    Operators approximating partial derivatives at vertices of triangulations by averaging

  • Popis výsledku anglicky

    We study the problem of a high-order approximation of the partial derivatives of smooth functions u in the vertices of triangulations under the assumption that the values of u are known in the vertices of the given triangulation only. An operator A computing these approximations is said to be consistent when, for every vertex a, the approximations A(u) (a) are equal to the partial derivative of u at a for all polynomials u of degree less than or equal to two. We characterize all consistent averaging operators and show that, in general, there exists no consistent approximation of the gradient of a smooth function u by averaging.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1M0579" target="_blank" >1M0579: Centrum integrovaného navrhování progresivních stavebních konstrukcí</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematica Bohemica

  • ISSN

    0862-7959

  • e-ISSN

  • Svazek periodika

    2010 (135)

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    10

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus