Application of soft computing techniques for reliability calculation of time demanding problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F15%3APU117430" target="_blank" >RIV/00216305:26110/15:PU117430 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of soft computing techniques for reliability calculation of time demanding problems
Popis výsledku v původním jazyce
The reliability analysis of complex structural systems requires utilization of approximation methods for calculation of reliability measures with the view of reduction of computational efforts to an acceptable level. In the paper, an artificial neural network based response surface method in combination with the small-sample simulation technique is presented. An artificial neural network is used as a surrogate model for approximation of original limit state function. Efficiency is emphasized by utilization of the stratified simulation for the selection of neural network training set elements. Response surface obtained is independent of the type of distribution or correlations among the basic variables which enables sensitivity studies with respect to these parameters without much computational effort. Subsequently, the ANN surrogate model is utilized in conjunction with Monte Carlo simulation method to obtain desired reliability measures. The proposed method is tested using nonlinear limit state function taken from the literature as well as employed for reliability assessment of concrete bridge.
Název v anglickém jazyce
Application of soft computing techniques for reliability calculation of time demanding problems
Popis výsledku anglicky
The reliability analysis of complex structural systems requires utilization of approximation methods for calculation of reliability measures with the view of reduction of computational efforts to an acceptable level. In the paper, an artificial neural network based response surface method in combination with the small-sample simulation technique is presented. An artificial neural network is used as a surrogate model for approximation of original limit state function. Efficiency is emphasized by utilization of the stratified simulation for the selection of neural network training set elements. Response surface obtained is independent of the type of distribution or correlations among the basic variables which enables sensitivity studies with respect to these parameters without much computational effort. Subsequently, the ANN surrogate model is utilized in conjunction with Monte Carlo simulation method to obtain desired reliability measures. The proposed method is tested using nonlinear limit state function taken from the literature as well as employed for reliability assessment of concrete bridge.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-07730S" target="_blank" >GA15-07730S: Přímá a inverzní spolehlivostní optimalizace s ohledem na nejistoty (FIRBO)</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Safety and Reliability of Complex Engineered Systems: Proceedings of the 25th European Safety and Reliability Conference, ESREL 2015, Zürich, Switzerland, 7–10 September 2015
ISBN
978-1-138-02879-1
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
4151-4159
Název nakladatele
L. Podofillini et al.
Místo vydání
Curych, Švýcarsko
Místo konání akce
Zürich
Datum konání akce
3. 9. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—