Utilization of Artificial Neural Network Based Response Surface Method for Reliability Analysis of Structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F15%3APU117442" target="_blank" >RIV/00216305:26110/15:PU117442 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Utilization of Artificial Neural Network Based Response Surface Method for Reliability Analysis of Structures
Popis výsledku v původním jazyce
The key step of the reliability and lifetime assessment of structures is the determination of reliability level, described by failure probability or reliability index. Some of the simulation or approximation techniques can be used for this purpose. In case of large structures analyzed using the nonlinear finite element method, it is necessary to develop more efficient procedures, reducing the number of evaluations of original limit state function to a minimum. Here, artificial neural network based response surface method in combination with small-sample simulation technique Latin Hypercube Sampling is utilized for the approximation of a limit state function. Thanks to ability of artificial neural network to generalize it is efficient to fit limit statefunction with a sufficiently small number of simulations.
Název v anglickém jazyce
Utilization of Artificial Neural Network Based Response Surface Method for Reliability Analysis of Structures
Popis výsledku anglicky
The key step of the reliability and lifetime assessment of structures is the determination of reliability level, described by failure probability or reliability index. Some of the simulation or approximation techniques can be used for this purpose. In case of large structures analyzed using the nonlinear finite element method, it is necessary to develop more efficient procedures, reducing the number of evaluations of original limit state function to a minimum. Here, artificial neural network based response surface method in combination with small-sample simulation technique Latin Hypercube Sampling is utilized for the approximation of a limit state function. Thanks to ability of artificial neural network to generalize it is efficient to fit limit statefunction with a sufficiently small number of simulations.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JM - Inženýrské stavitelství
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-07730S" target="_blank" >GA15-07730S: Přímá a inverzní spolehlivostní optimalizace s ohledem na nejistoty (FIRBO)</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů