Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

ZONE STOCHASTIC FORECASTING MODEL FOR MANAGEMNT OF LARGE OPEN WATER RESERVOIR WITH STORAGE FUNCTION

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F16%3APU119729" target="_blank" >RIV/00216305:26110/16:PU119729 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.5593/SGEM2016/B31/S12.087" target="_blank" >http://dx.doi.org/10.5593/SGEM2016/B31/S12.087</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5593/SGEM2016/B31/S12.087" target="_blank" >10.5593/SGEM2016/B31/S12.087</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    ZONE STOCHASTIC FORECASTING MODEL FOR MANAGEMNT OF LARGE OPEN WATER RESERVOIR WITH STORAGE FUNCTION

  • Popis výsledku v původním jazyce

    The main advantage of stochastic forecasting is fan of possible value, which deterministic method of forecasting could not give us. Future development of random process is described much better by stochastic then deterministic forecasting. We can categorize discharge in measurement profile as random process. Contents of article are development of forecasting model for managed large open water reservoir with supply function. Model is based on zone linear autoregressive model, which forecasting values of average monthly flow from linear combination previous values of average monthly flow, autoregressive coefficients and random numbers. All data were sorted to zone with same size (last zone has different size due to residue of data). Computing zone was chosen by last measurement average monthly flow. Matrix of correlation was assembled only from data belonging to matching zone. Autoregressive coefficient was calculated from Yule-Walker equations (Yule, Walker, 1927, 1931). The model was compiled for forecast of 1 to 12 month with backward correlation from 2 to 11 months. Data was got rid of asymmetry with help of Box-Cox rule (Box, Cox, 1964), value r was found by optimization. In next step were data transform to standard normal distribution. Our data were with monthly step and forecasting was recurrent. We used 90 years long real flow series for compile of the model. First 75 years were used for calibration of model (autoregressive coefficient), last 15 years were used only for validation. Outputs of model were compared with real flow series. For comparison between real flow series (100% successfully of forecast) and forecasts, we used histogram and average error between each forecasted flow and measurement flow. Results were statistically evaluated on monthly level. Results show that the longest backward correlation did not give the best results. Flows forecasted by the model give very fine results in drought period. Higher errors were reached in months with highe

  • Název v anglickém jazyce

    ZONE STOCHASTIC FORECASTING MODEL FOR MANAGEMNT OF LARGE OPEN WATER RESERVOIR WITH STORAGE FUNCTION

  • Popis výsledku anglicky

    The main advantage of stochastic forecasting is fan of possible value, which deterministic method of forecasting could not give us. Future development of random process is described much better by stochastic then deterministic forecasting. We can categorize discharge in measurement profile as random process. Contents of article are development of forecasting model for managed large open water reservoir with supply function. Model is based on zone linear autoregressive model, which forecasting values of average monthly flow from linear combination previous values of average monthly flow, autoregressive coefficients and random numbers. All data were sorted to zone with same size (last zone has different size due to residue of data). Computing zone was chosen by last measurement average monthly flow. Matrix of correlation was assembled only from data belonging to matching zone. Autoregressive coefficient was calculated from Yule-Walker equations (Yule, Walker, 1927, 1931). The model was compiled for forecast of 1 to 12 month with backward correlation from 2 to 11 months. Data was got rid of asymmetry with help of Box-Cox rule (Box, Cox, 1964), value r was found by optimization. In next step were data transform to standard normal distribution. Our data were with monthly step and forecasting was recurrent. We used 90 years long real flow series for compile of the model. First 75 years were used for calibration of model (autoregressive coefficient), last 15 years were used only for validation. Outputs of model were compared with real flow series. For comparison between real flow series (100% successfully of forecast) and forecasts, we used histogram and average error between each forecasted flow and measurement flow. Results were statistically evaluated on monthly level. Results show that the longest backward correlation did not give the best results. Flows forecasted by the model give very fine results in drought period. Higher errors were reached in months with highe

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    SGEM Conference Proceedingsc

  • ISBN

    978-619-7105-61-2

  • ISSN

    1314-2704

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    555-561

  • Název nakladatele

    STEF92 Technology Ltd.

  • Místo vydání

    51 Alexander Malinov Blvd., 1712, Sofia, Bulgari

  • Místo konání akce

    Albena

  • Datum konání akce

    30. 6. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000391653400110