New Formula for Geometric Stiffness Matrix Calculation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F16%3APU122650" target="_blank" >RIV/00216305:26110/16:PU122650 - isvavai.cz</a>
Výsledek na webu
<a href="http://file.scirp.org/Html/7-1720559_65967.htm" target="_blank" >http://file.scirp.org/Html/7-1720559_65967.htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4236//jamp.2016.44084" target="_blank" >10.4236//jamp.2016.44084</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
New Formula for Geometric Stiffness Matrix Calculation
Popis výsledku v původním jazyce
The standard formula for geometric stiffness matrix calculation, which is convenient for most engineering applications, is seen to be unsatisfactory for large strains because of poor accuracy, low convergence rate, and stability. For very large compressions, the tangent stiffness in the direction of the compression can even become negative, which can be regarded as physical nonsense. So in many cases rubber materials exposed to great compression cannot be analyzed, or the analysis could lead to very poor convergence. Problems with the standard geometric stiffness matrix can even occur with a small strain in the case of plastic yielding, which eventuates even greater practical problems. The authors demonstrate that amore precisional approach would not lead to such strange and theoretically unjustified results. An improved formula that would eliminate the disadvantages mentioned above and leads to higher convergence rate and more robust computations is suggested in this paper. The new formula can be derived from the principle of virtual work using a modified Green-Lagrange strain tensor, or from equilibrium conditions where in the choice of a specific strain measure is not needed for the geometric stiffness derivation (which can also be used for derivation of geometric stiffness of a rigid truss member). The new formula has been verified in practice with many calculations and implemented in the RFEM and SCIA Engineer programs. The advantages of the new formula in comparison with the standard formula are shown using several examples.
Název v anglickém jazyce
New Formula for Geometric Stiffness Matrix Calculation
Popis výsledku anglicky
The standard formula for geometric stiffness matrix calculation, which is convenient for most engineering applications, is seen to be unsatisfactory for large strains because of poor accuracy, low convergence rate, and stability. For very large compressions, the tangent stiffness in the direction of the compression can even become negative, which can be regarded as physical nonsense. So in many cases rubber materials exposed to great compression cannot be analyzed, or the analysis could lead to very poor convergence. Problems with the standard geometric stiffness matrix can even occur with a small strain in the case of plastic yielding, which eventuates even greater practical problems. The authors demonstrate that amore precisional approach would not lead to such strange and theoretically unjustified results. An improved formula that would eliminate the disadvantages mentioned above and leads to higher convergence rate and more robust computations is suggested in this paper. The new formula can be derived from the principle of virtual work using a modified Green-Lagrange strain tensor, or from equilibrium conditions where in the choice of a specific strain measure is not needed for the geometric stiffness derivation (which can also be used for derivation of geometric stiffness of a rigid truss member). The new formula has been verified in practice with many calculations and implemented in the RFEM and SCIA Engineer programs. The advantages of the new formula in comparison with the standard formula are shown using several examples.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-25320S" target="_blank" >GA14-25320S: Aspekty použití komplexních nelineárních materiálových modelů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Applied Mathematics and Physics
ISSN
2327-4379
e-ISSN
—
Svazek periodika
2016
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
733-748
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—