Service life, reliability and their role in the Life Cycle Analysis of concrete structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F17%3APU123332" target="_blank" >RIV/00216305:26110/17:PU123332 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.novapublishers.com/catalog/product_info.php?products_id=60937&osCsid=54fca1a7e13d2151e29b4153c8e6cc00" target="_blank" >https://www.novapublishers.com/catalog/product_info.php?products_id=60937&osCsid=54fca1a7e13d2151e29b4153c8e6cc00</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Service life, reliability and their role in the Life Cycle Analysis of concrete structures
Popis výsledku v původním jazyce
Apart from the assessment of potential environmental impact, one of the decisive parts of the life cycle analysis of built structures is life cycle costing, which depends strongly on the service life of the structure in question. When assessing or predicting service life, one has to consider the loading of the structure and the environmental conditions at its location, and subsequently the relevant reliability parameter related to a suitable limit state. This chapter concentrates on reinforced concrete structures – concrete being probably the most frequently used building material. An approach and tool for advanced design, assessment and decision-making are presented which utilize the modelling of degradation phenomena and the relevant reliability of concrete structures, taking into account the uncertainties involved. This can be effectively achieved in the context of limit states associated with durability; their reliability assessment is effectively performed by employing the full probabilistic safety format, utilizing suitable simulation techniques. Degradation aspects, such as the carbonation of concrete, chloride ion ingress and corrosion of reinforcement, enable the prediction of reliability over time, and the estimation of structural lifetime. Different mathematical models are mentioned, as well as their level of sophistication and requirements concerning input data. Relevant limit states for the estimation of concrete degradation are explained, and the aspect of time is introduced together with the probabilistic safety format. Moreover, with regard to performance based design, together with sustainability and environmentally friendly policies, the probability of failure is an important indicator in the design and assessment of concrete structures. It can be used in three areas: the assessment of time-dependent reliability level, life cycle costing and the quantification of risks.
Název v anglickém jazyce
Service life, reliability and their role in the Life Cycle Analysis of concrete structures
Popis výsledku anglicky
Apart from the assessment of potential environmental impact, one of the decisive parts of the life cycle analysis of built structures is life cycle costing, which depends strongly on the service life of the structure in question. When assessing or predicting service life, one has to consider the loading of the structure and the environmental conditions at its location, and subsequently the relevant reliability parameter related to a suitable limit state. This chapter concentrates on reinforced concrete structures – concrete being probably the most frequently used building material. An approach and tool for advanced design, assessment and decision-making are presented which utilize the modelling of degradation phenomena and the relevant reliability of concrete structures, taking into account the uncertainties involved. This can be effectively achieved in the context of limit states associated with durability; their reliability assessment is effectively performed by employing the full probabilistic safety format, utilizing suitable simulation techniques. Degradation aspects, such as the carbonation of concrete, chloride ion ingress and corrosion of reinforcement, enable the prediction of reliability over time, and the estimation of structural lifetime. Different mathematical models are mentioned, as well as their level of sophistication and requirements concerning input data. Relevant limit states for the estimation of concrete degradation are explained, and the aspect of time is introduced together with the probabilistic safety format. Moreover, with regard to performance based design, together with sustainability and environmentally friendly policies, the probability of failure is an important indicator in the design and assessment of concrete structures. It can be used in three areas: the assessment of time-dependent reliability level, life cycle costing and the quantification of risks.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Advances in Environmental Research. Volume 55
ISBN
978-1-53610-888-0
Počet stran výsledku
17
Strana od-do
47-63
Počet stran knihy
212
Název nakladatele
Nova Science Publishers, Inc.
Místo vydání
Neuveden
Kód UT WoS kapitoly
—