Extended Algorithm for Travelling Salesman Problem with Conditions in Nodes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F17%3APU123737" target="_blank" >RIV/00216305:26110/17:PU123737 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-981-10-4190-7_16" target="_blank" >https://link.springer.com/chapter/10.1007/978-981-10-4190-7_16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-10-4190-7_16" target="_blank" >10.1007/978-981-10-4190-7_16</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Extended Algorithm for Travelling Salesman Problem with Conditions in Nodes
Popis výsledku v původním jazyce
The paper describes a new algorithm for finding the shortest path in the graph among all nodes. The algorithm is based on the sequential removing of nodes from the graph. After removing a node, it is necessary to generate new edges that represent all paths through the node. This procedure maintains the configuration of the graph. The newly created edges are referred to as composed edges. The newly generated edges can be connected together only with simple (original) edges, because this could lead to overlaping the edges of the original graph and thus may occur incorrect paths in the graph. During the algorithm proceeds the continuous optimization of the edges so that it removes loops around the nodes. This leads to a significant reduction of the number of combinations of edges, and it simplifies the process. The algorithm was tested though procedure in Python and its complexity is polynomial time. The job is known as a problem of a Salesman or a Hamiltonian path or Hamiltonian circle in the graph. Results of proposed method can be used in logistics (distribution of goods among locations), in transport planning (selection of the optimal route between given points) in crisis management (optimal route for intervention in case of fire or accidents) in tourism and related services (planning the shortest route trip) or spatial analyses in geographic information systems (GIS).
Název v anglickém jazyce
Extended Algorithm for Travelling Salesman Problem with Conditions in Nodes
Popis výsledku anglicky
The paper describes a new algorithm for finding the shortest path in the graph among all nodes. The algorithm is based on the sequential removing of nodes from the graph. After removing a node, it is necessary to generate new edges that represent all paths through the node. This procedure maintains the configuration of the graph. The newly created edges are referred to as composed edges. The newly generated edges can be connected together only with simple (original) edges, because this could lead to overlaping the edges of the original graph and thus may occur incorrect paths in the graph. During the algorithm proceeds the continuous optimization of the edges so that it removes loops around the nodes. This leads to a significant reduction of the number of combinations of edges, and it simplifies the process. The algorithm was tested though procedure in Python and its complexity is polynomial time. The job is known as a problem of a Salesman or a Hamiltonian path or Hamiltonian circle in the graph. Results of proposed method can be used in logistics (distribution of goods among locations), in transport planning (selection of the optimal route between given points) in crisis management (optimal route for intervention in case of fire or accidents) in tourism and related services (planning the shortest route trip) or spatial analyses in geographic information systems (GIS).
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Social Interactions and Networking in Cyber Society
ISBN
978-9-8110-4189-1
Počet stran výsledku
9
Strana od-do
199-207
Počet stran knihy
247
Název nakladatele
Springer Nature Singapore Pte Ltd.
Místo vydání
Singapore
Kód UT WoS kapitoly
—