Fractal Analysis of Rock Joint Profiles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F17%3APU125620" target="_blank" >RIV/00216305:26110/17:PU125620 - isvavai.cz</a>
Výsledek na webu
<a href="http://iopscience.iop.org/article/10.1088/1757-899X/245/3/032006" target="_blank" >http://iopscience.iop.org/article/10.1088/1757-899X/245/3/032006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1757-899X/245/3/032006" target="_blank" >10.1088/1757-899X/245/3/032006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fractal Analysis of Rock Joint Profiles
Popis výsledku v původním jazyce
Surface reliefs of rock joints are analyzed in geotechnics when shear strength of rocky slopes is estimated. The rock joint profiles actually are self-affine fractal curves and computations of their fractal dimensions require special methods. Many papers devoted to the fractal properties of these profiles were published in the past but only a few of those papers employed a convenient computational method that would have guaranteed a sound value of that dimension. As a consequence, anomalously low dimensions were presented. This contribution deals with two computational modifications that lead to sound fractal dimensions of the self-affine rock joint profiles. These are the modified box-counting method and the modified yard-stick method sometimes called the compass method. Both these methods are frequently applied to self-similar fractal curves but the self-affine profile curves due to their self-affine nature require modified computational procedures implemented in computer programs.
Název v anglickém jazyce
Fractal Analysis of Rock Joint Profiles
Popis výsledku anglicky
Surface reliefs of rock joints are analyzed in geotechnics when shear strength of rocky slopes is estimated. The rock joint profiles actually are self-affine fractal curves and computations of their fractal dimensions require special methods. Many papers devoted to the fractal properties of these profiles were published in the past but only a few of those papers employed a convenient computational method that would have guaranteed a sound value of that dimension. As a consequence, anomalously low dimensions were presented. This contribution deals with two computational modifications that lead to sound fractal dimensions of the self-affine rock joint profiles. These are the modified box-counting method and the modified yard-stick method sometimes called the compass method. Both these methods are frequently applied to self-similar fractal curves but the self-affine profile curves due to their self-affine nature require modified computational procedures implemented in computer programs.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10504 - Mineralogy
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-03403S" target="_blank" >GA13-03403S: Morfologická analýza lomových povrchů a její důsledky pro stabilitu velkých civilně-inženýrských staveb</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
WMCAUS 2017 - Abstract Collection Book
ISBN
—
ISSN
1757-8981
e-ISSN
—
Počet stran výsledku
4
Strana od-do
1-4
Název nakladatele
IOP Publishing
Místo vydání
UK
Místo konání akce
Prague
Datum konání akce
12. 6. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000419056401005