Inclusion of Randomness into SPH Simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F17%3APU125839" target="_blank" >RIV/00216305:26110/17:PU125839 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.wseas.org/multimedia/journals/heat/2017/a025812-166.php" target="_blank" >http://www.wseas.org/multimedia/journals/heat/2017/a025812-166.php</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Inclusion of Randomness into SPH Simulations
Popis výsledku v původním jazyce
The complexity of numerical simulations is increasing alongside the growing need to capture the behaviour of real-world processes as well as possible. A frequent problem is the inclusion of the randomness factor in numerical simulations in order to better reflect the results of experiments. In cases when the material used in experiments shows signs of heterogeneity, it is also advisable to introduce it in the numerical model. The inclusion of heterogeneity can take place in several ways, though this of course always depends on the numerical method chosen. This contribution describes a procedure which can be used to implement material heterogeneity within the numerical code of the Smoothed Particle Hydrodynamics (SPH) method. The whole algorithm is explained using the example of a cylindrical concrete body striking a solid base. Aspects which need to be maintained to ensure algorithm functionality are described, too. As it is relatively difficult to implement the initial singularities of the crack type into the SPH method, a procedure is described at the end of the article which can be used to implement initial cracks to simulations using a described algorithm. The results of the simulations show that the described algorithms can be used successfully.
Název v anglickém jazyce
Inclusion of Randomness into SPH Simulations
Popis výsledku anglicky
The complexity of numerical simulations is increasing alongside the growing need to capture the behaviour of real-world processes as well as possible. A frequent problem is the inclusion of the randomness factor in numerical simulations in order to better reflect the results of experiments. In cases when the material used in experiments shows signs of heterogeneity, it is also advisable to introduce it in the numerical model. The inclusion of heterogeneity can take place in several ways, though this of course always depends on the numerical method chosen. This contribution describes a procedure which can be used to implement material heterogeneity within the numerical code of the Smoothed Particle Hydrodynamics (SPH) method. The whole algorithm is explained using the example of a cylindrical concrete body striking a solid base. Aspects which need to be maintained to ensure algorithm functionality are described, too. As it is relatively difficult to implement the initial singularities of the crack type into the SPH method, a procedure is described at the end of the article which can be used to implement initial cracks to simulations using a described algorithm. The results of the simulations show that the described algorithms can be used successfully.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
WSEAS Transaction on Heat and Mass Transfer
ISSN
1790-5044
e-ISSN
—
Svazek periodika
2017
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
GR - Řecká republika
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—