Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Voronoi weighting of samples in Monte Carlo intergration

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F17%3APU126335" target="_blank" >RIV/00216305:26110/17:PU126335 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.7712/120217.5385.17023" target="_blank" >http://dx.doi.org/10.7712/120217.5385.17023</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.7712/120217.5385.17023" target="_blank" >10.7712/120217.5385.17023</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Voronoi weighting of samples in Monte Carlo intergration

  • Popis výsledku v původním jazyce

    The standard way to numerically calculate integrals such as the ones featured in estimation of statistical moments of functions of random variables using Monte Carlo procedure is to: (i) perform selection of samples from the random vector, (ii) approximate the integrals using averages of the functions evaluated at the sampling points. If the N sim points are selected with an equal probability (with respect to the joint distribution function) such as in Monte Carlo sampling, the averages use equal weights 1/N sim . The problem with Monte Carlo sampling is that the estimated values exhibit a large variance due to the fact that the sampling points are usually not spread uniformly over the domain of sampling probabilities. One way to improve the accuracy would be to perform a more advanced sampling. The paper explores another way to improve the Monte Carlo integration approach: by considering unequal weights. These weights are obtained by transforming the sampling points into sampling probabilities (points within a unit hypercube), and subsequently by associating the sampling points with weights obtained as volumes of regions/cells around the sampling points within a unit hypercube. These cells are constructed by the Voronoi tessellation around each point. Supposedly, this approach could have been considered superior over the naive one because it can suppress inaccuracies stemming from clusters of sampling points. The paper also explores utilization of the Voronoi diagram for identification of optimal locations for sample size extension.

  • Název v anglickém jazyce

    Voronoi weighting of samples in Monte Carlo intergration

  • Popis výsledku anglicky

    The standard way to numerically calculate integrals such as the ones featured in estimation of statistical moments of functions of random variables using Monte Carlo procedure is to: (i) perform selection of samples from the random vector, (ii) approximate the integrals using averages of the functions evaluated at the sampling points. If the N sim points are selected with an equal probability (with respect to the joint distribution function) such as in Monte Carlo sampling, the averages use equal weights 1/N sim . The problem with Monte Carlo sampling is that the estimated values exhibit a large variance due to the fact that the sampling points are usually not spread uniformly over the domain of sampling probabilities. One way to improve the accuracy would be to perform a more advanced sampling. The paper explores another way to improve the Monte Carlo integration approach: by considering unequal weights. These weights are obtained by transforming the sampling points into sampling probabilities (points within a unit hypercube), and subsequently by associating the sampling points with weights obtained as volumes of regions/cells around the sampling points within a unit hypercube. These cells are constructed by the Voronoi tessellation around each point. Supposedly, this approach could have been considered superior over the naive one because it can suppress inaccuracies stemming from clusters of sampling points. The paper also explores utilization of the Voronoi diagram for identification of optimal locations for sample size extension.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20102 - Construction engineering, Municipal and structural engineering

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 2nd International Conference on Uncertainty Quantification in Computational Sciences and Engineering

  • ISBN

    978-618-82844-4-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    13

  • Strana od-do

    478-491

  • Název nakladatele

    Neuveden

  • Místo vydání

    Neuveden

  • Místo konání akce

    Rhodes Island

  • Datum konání akce

    15. 6. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku