Voronoi weighting of samples in Monte Carlo intergration
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F17%3APU126335" target="_blank" >RIV/00216305:26110/17:PU126335 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.7712/120217.5385.17023" target="_blank" >http://dx.doi.org/10.7712/120217.5385.17023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7712/120217.5385.17023" target="_blank" >10.7712/120217.5385.17023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Voronoi weighting of samples in Monte Carlo intergration
Popis výsledku v původním jazyce
The standard way to numerically calculate integrals such as the ones featured in estimation of statistical moments of functions of random variables using Monte Carlo procedure is to: (i) perform selection of samples from the random vector, (ii) approximate the integrals using averages of the functions evaluated at the sampling points. If the N sim points are selected with an equal probability (with respect to the joint distribution function) such as in Monte Carlo sampling, the averages use equal weights 1/N sim . The problem with Monte Carlo sampling is that the estimated values exhibit a large variance due to the fact that the sampling points are usually not spread uniformly over the domain of sampling probabilities. One way to improve the accuracy would be to perform a more advanced sampling. The paper explores another way to improve the Monte Carlo integration approach: by considering unequal weights. These weights are obtained by transforming the sampling points into sampling probabilities (points within a unit hypercube), and subsequently by associating the sampling points with weights obtained as volumes of regions/cells around the sampling points within a unit hypercube. These cells are constructed by the Voronoi tessellation around each point. Supposedly, this approach could have been considered superior over the naive one because it can suppress inaccuracies stemming from clusters of sampling points. The paper also explores utilization of the Voronoi diagram for identification of optimal locations for sample size extension.
Název v anglickém jazyce
Voronoi weighting of samples in Monte Carlo intergration
Popis výsledku anglicky
The standard way to numerically calculate integrals such as the ones featured in estimation of statistical moments of functions of random variables using Monte Carlo procedure is to: (i) perform selection of samples from the random vector, (ii) approximate the integrals using averages of the functions evaluated at the sampling points. If the N sim points are selected with an equal probability (with respect to the joint distribution function) such as in Monte Carlo sampling, the averages use equal weights 1/N sim . The problem with Monte Carlo sampling is that the estimated values exhibit a large variance due to the fact that the sampling points are usually not spread uniformly over the domain of sampling probabilities. One way to improve the accuracy would be to perform a more advanced sampling. The paper explores another way to improve the Monte Carlo integration approach: by considering unequal weights. These weights are obtained by transforming the sampling points into sampling probabilities (points within a unit hypercube), and subsequently by associating the sampling points with weights obtained as volumes of regions/cells around the sampling points within a unit hypercube. These cells are constructed by the Voronoi tessellation around each point. Supposedly, this approach could have been considered superior over the naive one because it can suppress inaccuracies stemming from clusters of sampling points. The paper also explores utilization of the Voronoi diagram for identification of optimal locations for sample size extension.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2nd International Conference on Uncertainty Quantification in Computational Sciences and Engineering
ISBN
978-618-82844-4-9
ISSN
—
e-ISSN
—
Počet stran výsledku
13
Strana od-do
478-491
Název nakladatele
Neuveden
Místo vydání
Neuveden
Místo konání akce
Rhodes Island
Datum konání akce
15. 6. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—