Dynamical Model of Interacting Particles for the Construction of Audze–Eglajs Designs in a Periodic Space
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F17%3APU126790" target="_blank" >RIV/00216305:26110/17:PU126790 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamical Model of Interacting Particles for the Construction of Audze–Eglajs Designs in a Periodic Space
Popis výsledku v původním jazyce
The paper presents a dynamical model of mutually interacting particles in a periodic space designed to provide optimal sets of points for numerical integration. The obtained set of points is applied to Monte Carlo type integration in statistical analyses of computer models. The dynamical model mimics the behavior of charged particles with repulsive forces that are based on a selected formulation of potential. When the kinetic energy of the damped particle system approaches zero, the potential energy is reaches a local minimum. The domain within which the particles are to be distributed is a unit hypercube of a dimension equal to the number of basic variables for Monte Carlo integration. It is shown to be necessary for the design domain to be periodically repeated in order to obtain statistically uniform coverage by the points. The gained coordinates of the points in the unit hypercube are then transformed into the real space of variables in the analyzed model and used as integration points (realizations of random variables). The quality or optimality of the resulting design is dependent on the distance-based constitutive law that is derived from the assumed potential
Název v anglickém jazyce
Dynamical Model of Interacting Particles for the Construction of Audze–Eglajs Designs in a Periodic Space
Popis výsledku anglicky
The paper presents a dynamical model of mutually interacting particles in a periodic space designed to provide optimal sets of points for numerical integration. The obtained set of points is applied to Monte Carlo type integration in statistical analyses of computer models. The dynamical model mimics the behavior of charged particles with repulsive forces that are based on a selected formulation of potential. When the kinetic energy of the damped particle system approaches zero, the potential energy is reaches a local minimum. The domain within which the particles are to be distributed is a unit hypercube of a dimension equal to the number of basic variables for Monte Carlo integration. It is shown to be necessary for the design domain to be periodically repeated in order to obtain statistically uniform coverage by the points. The gained coordinates of the points in the unit hypercube are then transformed into the real space of variables in the analyzed model and used as integration points (realizations of random variables). The quality or optimality of the resulting design is dependent on the distance-based constitutive law that is derived from the assumed potential
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-22230S" target="_blank" >GA16-22230S: Rozvoj pokročilých simulačních metod pro statistickou analýzu konstrukcí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 12th Int. Conf. on Structural Safety and Reliability
ISBN
978-3-903024-28-1
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
1374-1383
Název nakladatele
TU-Verlag Vienna
Místo vydání
Vienna
Místo konání akce
Vienna
Datum konání akce
6. 8. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—