Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Internal Length Scale of Weakest-Link Statistical Model for Quasi-Brittle Fracture

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F18%3APU127676" target="_blank" >RIV/00216305:26110/18:PU127676 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0001430" target="_blank" >https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0001430</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0001430" target="_blank" >10.1061/(ASCE)EM.1943-7889.0001430</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Internal Length Scale of Weakest-Link Statistical Model for Quasi-Brittle Fracture

  • Popis výsledku v původním jazyce

    Anchored by the theory of extreme value statistics, Weibull distribution is the most widely used mathematical model for strength distribution of brittle structures. In a series of recent studies, a finite weakest-link model was developed for strength distribution of quasi-brittle structures, and the classical Weibull distribution was shown to represent the large-size asymptote of the model. By employing a length scale, the finite weakest-link model is capable of capturing correctly the size effects on both the probability distribution and the mean value of structural strength. However, the connection of this length scale with the basic material properties is still missing. This study investigates the relationship between the length scale of the finite weakest-link model and the material length scales by analyzing the size effect on the mean structural strength. The mathematical form of this relationship is derived through dimensional analysis. To validate the model, a set of mean size effect curves is obtained through stochastic simulations, which use a nonlinear constitutive model involving both the Irwin characteristic length and the crack band width. The internal length scale of the weakest-link model is determined by optimum fitting of the benchmark size effect curves in the small-size range. Furthermore, the effect of stress field on this internal length scale is studied by considering three different loading configurations. The present analysis reveals the importance of the mean size effect analysis for the calibration of finite weakest-link model.

  • Název v anglickém jazyce

    Internal Length Scale of Weakest-Link Statistical Model for Quasi-Brittle Fracture

  • Popis výsledku anglicky

    Anchored by the theory of extreme value statistics, Weibull distribution is the most widely used mathematical model for strength distribution of brittle structures. In a series of recent studies, a finite weakest-link model was developed for strength distribution of quasi-brittle structures, and the classical Weibull distribution was shown to represent the large-size asymptote of the model. By employing a length scale, the finite weakest-link model is capable of capturing correctly the size effects on both the probability distribution and the mean value of structural strength. However, the connection of this length scale with the basic material properties is still missing. This study investigates the relationship between the length scale of the finite weakest-link model and the material length scales by analyzing the size effect on the mean structural strength. The mathematical form of this relationship is derived through dimensional analysis. To validate the model, a set of mean size effect curves is obtained through stochastic simulations, which use a nonlinear constitutive model involving both the Irwin characteristic length and the crack band width. The internal length scale of the weakest-link model is determined by optimum fitting of the benchmark size effect curves in the small-size range. Furthermore, the effect of stress field on this internal length scale is studied by considering three different loading configurations. The present analysis reveals the importance of the mean size effect analysis for the calibration of finite weakest-link model.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20102 - Construction engineering, Municipal and structural engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1408" target="_blank" >LO1408: AdMaS UP - Pokročilé stavební materiály, konstrukce a technologie</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Engineering Mechanics

  • ISSN

    0733-9399

  • e-ISSN

    1943-7889

  • Svazek periodika

    144

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    040180171-0401801711

  • Kód UT WoS článku

    000425611400007

  • EID výsledku v databázi Scopus

    2-s2.0-85042107729