Internal Length Scale of Weakest-Link Statistical Model for Quasi-Brittle Fracture
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F18%3APU127676" target="_blank" >RIV/00216305:26110/18:PU127676 - isvavai.cz</a>
Výsledek na webu
<a href="https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0001430" target="_blank" >https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0001430</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0001430" target="_blank" >10.1061/(ASCE)EM.1943-7889.0001430</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Internal Length Scale of Weakest-Link Statistical Model for Quasi-Brittle Fracture
Popis výsledku v původním jazyce
Anchored by the theory of extreme value statistics, Weibull distribution is the most widely used mathematical model for strength distribution of brittle structures. In a series of recent studies, a finite weakest-link model was developed for strength distribution of quasi-brittle structures, and the classical Weibull distribution was shown to represent the large-size asymptote of the model. By employing a length scale, the finite weakest-link model is capable of capturing correctly the size effects on both the probability distribution and the mean value of structural strength. However, the connection of this length scale with the basic material properties is still missing. This study investigates the relationship between the length scale of the finite weakest-link model and the material length scales by analyzing the size effect on the mean structural strength. The mathematical form of this relationship is derived through dimensional analysis. To validate the model, a set of mean size effect curves is obtained through stochastic simulations, which use a nonlinear constitutive model involving both the Irwin characteristic length and the crack band width. The internal length scale of the weakest-link model is determined by optimum fitting of the benchmark size effect curves in the small-size range. Furthermore, the effect of stress field on this internal length scale is studied by considering three different loading configurations. The present analysis reveals the importance of the mean size effect analysis for the calibration of finite weakest-link model.
Název v anglickém jazyce
Internal Length Scale of Weakest-Link Statistical Model for Quasi-Brittle Fracture
Popis výsledku anglicky
Anchored by the theory of extreme value statistics, Weibull distribution is the most widely used mathematical model for strength distribution of brittle structures. In a series of recent studies, a finite weakest-link model was developed for strength distribution of quasi-brittle structures, and the classical Weibull distribution was shown to represent the large-size asymptote of the model. By employing a length scale, the finite weakest-link model is capable of capturing correctly the size effects on both the probability distribution and the mean value of structural strength. However, the connection of this length scale with the basic material properties is still missing. This study investigates the relationship between the length scale of the finite weakest-link model and the material length scales by analyzing the size effect on the mean structural strength. The mathematical form of this relationship is derived through dimensional analysis. To validate the model, a set of mean size effect curves is obtained through stochastic simulations, which use a nonlinear constitutive model involving both the Irwin characteristic length and the crack band width. The internal length scale of the weakest-link model is determined by optimum fitting of the benchmark size effect curves in the small-size range. Furthermore, the effect of stress field on this internal length scale is studied by considering three different loading configurations. The present analysis reveals the importance of the mean size effect analysis for the calibration of finite weakest-link model.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1408" target="_blank" >LO1408: AdMaS UP - Pokročilé stavební materiály, konstrukce a technologie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Engineering Mechanics
ISSN
0733-9399
e-ISSN
1943-7889
Svazek periodika
144
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
040180171-0401801711
Kód UT WoS článku
000425611400007
EID výsledku v databázi Scopus
2-s2.0-85042107729