Prestressed concrete roof girders: Part II – Surrogate modeling and sensitivity analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F18%3APU130097" target="_blank" >RIV/00216305:26110/18:PU130097 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Prestressed concrete roof girders: Part II – Surrogate modeling and sensitivity analysis
Popis výsledku v původním jazyce
The paper describes a particular part of complex stochastic modeling and design of a precast prestressed concrete girder failing in shear, namely surrogate modeling and sensitivity analysis. Both methods were efficiently used in order to reduce high computational effort related to utilization of a 3D nonlinear FEM model. Two types of surrogate models have been developed: (1) artificial neural network model and (2) polynomial chaos expansion model. In case of sensitivity analysis, three methods were utilized and compared: (i) Spearman non-parametric rank-order statistical correlation sensitivity, (ii) sensitivity analysis in terms of coefficient of variation, and (iii) sensitivity analysis in terms of Sobol sensitivity indices. The obtained information was used to set up a stochastic model and surrogate models in an optimum manner and was employed in the subsequent determination of selected uncertain design parameters followed by load-bearing capacity and reliability assessment using semi-probabilistic as well as fully probabilistic approaches.
Název v anglickém jazyce
Prestressed concrete roof girders: Part II – Surrogate modeling and sensitivity analysis
Popis výsledku anglicky
The paper describes a particular part of complex stochastic modeling and design of a precast prestressed concrete girder failing in shear, namely surrogate modeling and sensitivity analysis. Both methods were efficiently used in order to reduce high computational effort related to utilization of a 3D nonlinear FEM model. Two types of surrogate models have been developed: (1) artificial neural network model and (2) polynomial chaos expansion model. In case of sensitivity analysis, three methods were utilized and compared: (i) Spearman non-parametric rank-order statistical correlation sensitivity, (ii) sensitivity analysis in terms of coefficient of variation, and (iii) sensitivity analysis in terms of Sobol sensitivity indices. The obtained information was used to set up a stochastic model and surrogate models in an optimum manner and was employed in the subsequent determination of selected uncertain design parameters followed by load-bearing capacity and reliability assessment using semi-probabilistic as well as fully probabilistic approaches.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Life Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision: Proceedings of the Sixth International Symposium on Life-Cycle Civil Engineering (IALCCE 2018)
ISBN
9781138626331
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
495-502
Název nakladatele
CRC press, Taylor and Francis group
Místo vydání
London
Místo konání akce
Ghent
Datum konání akce
28. 10. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000471120403026