Material structure generation of concrete and its further usage in numerical simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F18%3APU131754" target="_blank" >RIV/00216305:26110/18:PU131754 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.12989/sem.2018.68.3.335" target="_blank" >http://dx.doi.org/10.12989/sem.2018.68.3.335</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.12989/sem.2018.68.3.335" target="_blank" >10.12989/sem.2018.68.3.335</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Material structure generation of concrete and its further usage in numerical simulations
Popis výsledku v původním jazyce
The execution of an experiment is a complex affair. It includes the preparation of test specimens, the measurement process itself and also the evaluation of the experiment as such. Financial requirements can differ significantly. In contrast, the cost of numerical simulations can be negligible, but what is the credibility of a simulated experiment? Discussions frequently arise concerning the methodology used in simulations, and particularly over the geometric model used. Simplification, rounding or the complete omission of details are frequent reasons for differences that occur between simulation results and the results of executed experiments. However, the creation of a very complex geometry, perhaps all the way down to the resolution of the very structure of the material, can be complicated. The subject of the article is therefore a means of creating the material structure of concrete contained in a test specimen. Because a complex approach is taken right from the very start of the numerical simulation, maximum agreement with experimental results can be achieved. With regard to the automation of the process described, countless material structures can be generated and randomly produced samples simulated in this way. Subsequently, a certain degree of randomness can be observed in the results obtained, e.g., the shape of the failure – just as is the case with experiments. The first part of the article presents a description of a complex approach to the creation of a geometry representing real concrete test specimens. The second part presents a practical application in which the numerical simulation of the compressive testing of concrete is executed using the generated geometry
Název v anglickém jazyce
Material structure generation of concrete and its further usage in numerical simulations
Popis výsledku anglicky
The execution of an experiment is a complex affair. It includes the preparation of test specimens, the measurement process itself and also the evaluation of the experiment as such. Financial requirements can differ significantly. In contrast, the cost of numerical simulations can be negligible, but what is the credibility of a simulated experiment? Discussions frequently arise concerning the methodology used in simulations, and particularly over the geometric model used. Simplification, rounding or the complete omission of details are frequent reasons for differences that occur between simulation results and the results of executed experiments. However, the creation of a very complex geometry, perhaps all the way down to the resolution of the very structure of the material, can be complicated. The subject of the article is therefore a means of creating the material structure of concrete contained in a test specimen. Because a complex approach is taken right from the very start of the numerical simulation, maximum agreement with experimental results can be achieved. With regard to the automation of the process described, countless material structures can be generated and randomly produced samples simulated in this way. Subsequently, a certain degree of randomness can be observed in the results obtained, e.g., the shape of the failure – just as is the case with experiments. The first part of the article presents a description of a complex approach to the creation of a geometry representing real concrete test specimens. The second part presents a practical application in which the numerical simulation of the compressive testing of concrete is executed using the generated geometry
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-23578S" target="_blank" >GA17-23578S: Identifikace míry poškození vyztuženého betonu při extrémním zatížení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
STRUCTURAL ENGINEERING AND MECHANICS
ISSN
1225-4568
e-ISSN
1598-6217
Svazek periodika
68
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
KR - Korejská republika
Počet stran výsledku
10
Strana od-do
335-344
Kód UT WoS článku
000448918000006
EID výsledku v databázi Scopus
2-s2.0-85055888589