Response scatter control for discrete element models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F18%3APU136379" target="_blank" >RIV/00216305:26110/18:PU136379 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1201/9781315182964-63" target="_blank" >http://dx.doi.org/10.1201/9781315182964-63</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1201/9781315182964-63" target="_blank" >10.1201/9781315182964-63</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Response scatter control for discrete element models
Popis výsledku v původním jazyce
The so-called Lattice Discrete Particle Model (LDPM) naturally accounts for material heterogeneity by random particle placement and size, which is also constrained by a grading curve. This approach captures most microstructural effects of concrete very well, when compared to the continuum framework, however introducing higher order spatial variability enables to control and interpret the response scatter. This paper addresses the effects of various choices of spatially variable material property fields, such as random field described by power spectral functions or gradient based fields, and particle placement schemes, such as those derived from governing random or gradient based fields, in order to account for inherent variability and production processes of several classical concrete tests. These are e.g. cylinder and cube compression test, and unnotched three point bending test. As a consequence, the lattice models become sensitive to a particular choice of spatially variable material property fields and particular particle placement concept, which is no longer independent and random, and the scattering of the response can thus be associated with the physical meaning of an auto-correlation length and particular forms of the spectral function. In particular, the non-monotonous relationship between statistical characteristics of the response, such as the coefficient of variation of the load capacity, and spatial correlation structures, such as power spectral parameters, clearly support the hypotheses on causal relationship between spatial variability, auto-correlation length of the random fields, type of spectral function and meso/micro-structure of the material. By imposing correlated spatial variability the consistency and realism of the LDPM stochastic framework may dramatically increase if objective physical reference for the governing random field and correlation length is established. Since this represents a rather extreme case of high-dimensional problem, sim
Název v anglickém jazyce
Response scatter control for discrete element models
Popis výsledku anglicky
The so-called Lattice Discrete Particle Model (LDPM) naturally accounts for material heterogeneity by random particle placement and size, which is also constrained by a grading curve. This approach captures most microstructural effects of concrete very well, when compared to the continuum framework, however introducing higher order spatial variability enables to control and interpret the response scatter. This paper addresses the effects of various choices of spatially variable material property fields, such as random field described by power spectral functions or gradient based fields, and particle placement schemes, such as those derived from governing random or gradient based fields, in order to account for inherent variability and production processes of several classical concrete tests. These are e.g. cylinder and cube compression test, and unnotched three point bending test. As a consequence, the lattice models become sensitive to a particular choice of spatially variable material property fields and particular particle placement concept, which is no longer independent and random, and the scattering of the response can thus be associated with the physical meaning of an auto-correlation length and particular forms of the spectral function. In particular, the non-monotonous relationship between statistical characteristics of the response, such as the coefficient of variation of the load capacity, and spatial correlation structures, such as power spectral parameters, clearly support the hypotheses on causal relationship between spatial variability, auto-correlation length of the random fields, type of spectral function and meso/micro-structure of the material. By imposing correlated spatial variability the consistency and realism of the LDPM stochastic framework may dramatically increase if objective physical reference for the governing random field and correlation length is established. Since this represents a rather extreme case of high-dimensional problem, sim
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1408" target="_blank" >LO1408: AdMaS UP - Pokročilé stavební materiály, konstrukce a technologie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computational Modelling of Concrete Structures
ISBN
978-1-315-18296-4
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
517-524
Název nakladatele
CRC Press/Balkema
Místo vydání
Neuveden
Místo konání akce
Bad Hofgastein
Datum konání akce
26. 2. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000461335800063