Radiant wall cooling with pipes arranged in insulation panels attached to facades of existing buildings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F19%3APU133043" target="_blank" >RIV/00216305:26110/19:PU133043 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.e3s-conferences.org/articles/e3sconf/abs/2019/37/e3sconf_clima2019_03008/e3sconf_clima2019_03008.html" target="_blank" >https://www.e3s-conferences.org/articles/e3sconf/abs/2019/37/e3sconf_clima2019_03008/e3sconf_clima2019_03008.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/e3sconf/201911103013" target="_blank" >10.1051/e3sconf/201911103013</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Radiant wall cooling with pipes arranged in insulation panels attached to facades of existing buildings
Popis výsledku v původním jazyce
Radiant systems are being increasingly used for space heating and cooling of buildings. The contemporary research of radiant systems addresses mainly floor and ceiling structures. Research regarding the possibilities of their incorporation in wall structures is lacking, despite their potential advantages. This study addresses a radiant wall system manufactured according to a patent. The patented design involves panels that consist of pipes arranged in milled channels in thermal insulation. The potential advantage of this system is the fact that the thermally active panels can be attached to the facades of existing buildings as a part of their retrofit. Thereby, only minor interventions on the interior side of the retrofitted buildings are needed. To test and improve the design of the wall system, laboratory measurements and computer simulations were performed on a wall fragment for its operation under summer conditions. The results indicate a significant potential for improvement of the patented design by addressing the imperfections in the contact between pipe and wall. Inserting a metal fin between pipe and wall enhanced the cool distribution within the wall fragment considerably. From the three materials of the metal fin considered, using copper led to highest values of the cooling output, followed by aluminium. For these two metals the effect of increasing the thickness of the fin on the cooling output was small. On the contrary, the fin made of steel was the least efficient in terms of cool distribution. In this case the cooling output was most sensitive to the thickness of the fin.
Název v anglickém jazyce
Radiant wall cooling with pipes arranged in insulation panels attached to facades of existing buildings
Popis výsledku anglicky
Radiant systems are being increasingly used for space heating and cooling of buildings. The contemporary research of radiant systems addresses mainly floor and ceiling structures. Research regarding the possibilities of their incorporation in wall structures is lacking, despite their potential advantages. This study addresses a radiant wall system manufactured according to a patent. The patented design involves panels that consist of pipes arranged in milled channels in thermal insulation. The potential advantage of this system is the fact that the thermally active panels can be attached to the facades of existing buildings as a part of their retrofit. Thereby, only minor interventions on the interior side of the retrofitted buildings are needed. To test and improve the design of the wall system, laboratory measurements and computer simulations were performed on a wall fragment for its operation under summer conditions. The results indicate a significant potential for improvement of the patented design by addressing the imperfections in the contact between pipe and wall. Inserting a metal fin between pipe and wall enhanced the cool distribution within the wall fragment considerably. From the three materials of the metal fin considered, using copper led to highest values of the cooling output, followed by aluminium. For these two metals the effect of increasing the thickness of the fin on the cooling output was small. On the contrary, the fin made of steel was the least efficient in terms of cool distribution. In this case the cooling output was most sensitive to the thickness of the fin.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CLIMA 2019 Congress.Advanced HVAC&R&S Technology
ISBN
—
ISSN
2267-1242
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
EDP Sciences
Místo vydání
France
Místo konání akce
Bucharest, Romania
Datum konání akce
26. 5. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—