Maximum likelihood method for bandwidth selection in kernel conditional density estimate
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F19%3APU134070" target="_blank" >RIV/00216305:26110/19:PU134070 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/19:00111007
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00180-019-00884-0" target="_blank" >https://link.springer.com/article/10.1007/s00180-019-00884-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00180-019-00884-0" target="_blank" >10.1007/s00180-019-00884-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Maximum likelihood method for bandwidth selection in kernel conditional density estimate
Popis výsledku v původním jazyce
This paper discusses the kernel estimator of conditional density. A significant problem of kernel smoothing is bandwidth selection. The problem consists in the fact that optimal bandwidth depends on the unknown conditional and marginal density. This is the reason why some data-driven method needs to be applied. In this paper, we suggest a method for bandwidth selection based on a classical maximum likelihood approach. We consider a slight modification of the original method—the maximum likelihood method with one observation being left out. Applied to two types of conditional density estimators—to the Nadaraya–Watson and local linear estimator, the proposed method is compared with other known methods in a simulation study. Our aim is to compare the methods from different points of view, concentrating on the accuracy of the estimated bandwidths, on the final model quality measure, and on the computational time.
Název v anglickém jazyce
Maximum likelihood method for bandwidth selection in kernel conditional density estimate
Popis výsledku anglicky
This paper discusses the kernel estimator of conditional density. A significant problem of kernel smoothing is bandwidth selection. The problem consists in the fact that optimal bandwidth depends on the unknown conditional and marginal density. This is the reason why some data-driven method needs to be applied. In this paper, we suggest a method for bandwidth selection based on a classical maximum likelihood approach. We consider a slight modification of the original method—the maximum likelihood method with one observation being left out. Applied to two types of conditional density estimators—to the Nadaraya–Watson and local linear estimator, the proposed method is compared with other known methods in a simulation study. Our aim is to compare the methods from different points of view, concentrating on the accuracy of the estimated bandwidths, on the final model quality measure, and on the computational time.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTATIONAL STATISTICS & DATA ANALYSIS
ISSN
0943-4062
e-ISSN
1613-9658
Svazek periodika
34
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
16
Strana od-do
1871-1887
Kód UT WoS článku
000501848900019
EID výsledku v databázi Scopus
2-s2.0-85064158959