Adaptive stochastic management of the storage function for a large open reservoir using an artificial intelligence method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F19%3APU134679" target="_blank" >RIV/00216305:26110/19:PU134679 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.uh.sav.sk/Portals/16/vc_articles/2019_67_4_Kozel_314.pdf" target="_blank" >http://www.uh.sav.sk/Portals/16/vc_articles/2019_67_4_Kozel_314.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/johh-2019-0021" target="_blank" >10.2478/johh-2019-0021</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adaptive stochastic management of the storage function for a large open reservoir using an artificial intelligence method
Popis výsledku v původním jazyce
The design and evaluation of algorithms for adaptive stochastic control of reservoir function of the water reservoir using artificial intelligence methods (learning fuzzy model and neural networks) are described in this article. This procedure was tested on an artificial reservoir. Reservoir parameters have been designed to cause critical disturbances during the control process, and therefore the influences of control algorithms can be demonstrated in the course of controlled outflow of water from the reservoir. The results of the stochastic adaptive models were compared. Further, stochastic model results were compared with a resultant course of management obtained using the method of classical optimisation (differential evolution), which used stochastic forecast data from real series (100% forecast). Finally, the results of the dispatcher graph and adaptive stochastic control were compared. Achieved results of adaptive stochastic management provide inspiration for continuing research in the field.
Název v anglickém jazyce
Adaptive stochastic management of the storage function for a large open reservoir using an artificial intelligence method
Popis výsledku anglicky
The design and evaluation of algorithms for adaptive stochastic control of reservoir function of the water reservoir using artificial intelligence methods (learning fuzzy model and neural networks) are described in this article. This procedure was tested on an artificial reservoir. Reservoir parameters have been designed to cause critical disturbances during the control process, and therefore the influences of control algorithms can be demonstrated in the course of controlled outflow of water from the reservoir. The results of the stochastic adaptive models were compared. Further, stochastic model results were compared with a resultant course of management obtained using the method of classical optimisation (differential evolution), which used stochastic forecast data from real series (100% forecast). Finally, the results of the dispatcher graph and adaptive stochastic control were compared. Achieved results of adaptive stochastic management provide inspiration for continuing research in the field.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10501 - Hydrology
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Hydrology and Hydromechanics
ISSN
0042-790X
e-ISSN
1338-4333
Svazek periodika
64
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
8
Strana od-do
314-321
Kód UT WoS článku
000497193600003
EID výsledku v databázi Scopus
2-s2.0-85076305067