Global sensitivity analysis of reliability of structural bridge system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F19%3APU135548" target="_blank" >RIV/00216305:26110/19:PU135548 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.elsevier.com/locate/engstruct" target="_blank" >http://www.elsevier.com/locate/engstruct</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.engstruct.2019.05.045" target="_blank" >10.1016/j.engstruct.2019.05.045</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Global sensitivity analysis of reliability of structural bridge system
Popis výsledku v původním jazyce
The article deals with the analysis of the probability of failure of a load-bearing steel bridge member under bending. The focus is on fatigue failure caused by stress cycles from multiple repeated traffic loading on the bridge. Failure is defined by the occurrence of a fatigue crack of critical size. Crack propagation and the fatigue limit state are described using linear fracture mechanics. The failure probability is a function of the equivalent stress range, initial crack length, Paris exponent, number of load cycles (stress changes) increasing over time and other input random variables. The failure probability is evaluated in time steps and then studied using a new type of global sensitivity analysis subordinated to contrasts. The results of the sensitivity analysis show that the first (second) dominant variable is the equivalent stress range (initial crack length) at any given point in time of the bridge operation. Strong main effect of equivalent stress range is associated with higher values of failure probability at the end of the lifetime of the bridge. Small values of failure probability are strongly influenced by interactions among input variables, which cannot be expressed as the sum of main effects of the individual input variables. The main and higher-order indices of each input variable are supplemented by displaying its total index. The direct goal of probability and sensitivity analysis is structural reliability. Sensitivity analysis confirms and deepens the knowledge gained from the time-dependent probability analysis. The numerical example illustrates the rationality of probability-oriented sensitivity indices and the feasibility of their estimation using Latin Hypercube Sampling (LHS). In addition, structural reliability is studied using Bayesian probability, which identifies the times for planning bridge inspections.
Název v anglickém jazyce
Global sensitivity analysis of reliability of structural bridge system
Popis výsledku anglicky
The article deals with the analysis of the probability of failure of a load-bearing steel bridge member under bending. The focus is on fatigue failure caused by stress cycles from multiple repeated traffic loading on the bridge. Failure is defined by the occurrence of a fatigue crack of critical size. Crack propagation and the fatigue limit state are described using linear fracture mechanics. The failure probability is a function of the equivalent stress range, initial crack length, Paris exponent, number of load cycles (stress changes) increasing over time and other input random variables. The failure probability is evaluated in time steps and then studied using a new type of global sensitivity analysis subordinated to contrasts. The results of the sensitivity analysis show that the first (second) dominant variable is the equivalent stress range (initial crack length) at any given point in time of the bridge operation. Strong main effect of equivalent stress range is associated with higher values of failure probability at the end of the lifetime of the bridge. Small values of failure probability are strongly influenced by interactions among input variables, which cannot be expressed as the sum of main effects of the individual input variables. The main and higher-order indices of each input variable are supplemented by displaying its total index. The direct goal of probability and sensitivity analysis is structural reliability. Sensitivity analysis confirms and deepens the knowledge gained from the time-dependent probability analysis. The numerical example illustrates the rationality of probability-oriented sensitivity indices and the feasibility of their estimation using Latin Hypercube Sampling (LHS). In addition, structural reliability is studied using Bayesian probability, which identifies the times for planning bridge inspections.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-01589S" target="_blank" >GA17-01589S: Pokročilé výpočetní a pravděpodobnostní modelování ocelových konstrukcí s ohledem na únavové poškození</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ENGINEERING STRUCTURES
ISSN
0141-0296
e-ISSN
1873-7323
Svazek periodika
2019
Číslo periodika v rámci svazku
194
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
36-45
Kód UT WoS článku
000472991300004
EID výsledku v databázi Scopus
2-s2.0-85065918867