Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Periodic version of the minimax distance criterion for Monte Carlo integration

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F20%3APU137297" target="_blank" >RIV/00216305:26110/20:PU137297 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0965997820300508" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0965997820300508</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.advengsoft.2020.102900" target="_blank" >10.1016/j.advengsoft.2020.102900</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Periodic version of the minimax distance criterion for Monte Carlo integration

  • Popis výsledku v původním jazyce

    The selection of points for numerical integration of the Monte Carlo type, largely used in analysis of engineering problems, is developed. It is achieved by modification of the metric in the minimax optimality criterion. The standard minimax criterion ensures the design exhibits good space-filling property and therefore reduces the variance of the estimator of the integral. We, however, show that the points are not selected with the same probability over the space of sampling probabilities: some regions are over- or under-sampled when designs are generated repetitively. This violation of statistical uniformity may lead to systematically biased integral estimators. We propose that periodic metric be considered for calculation of the minimax distance. Such periodic minimax criterion provides statistically uniform designs leading to unbiased integration results and also low estimator variance due to retained space-filling property. These conclusions are demonstrated by examples integrating analytical functions. The designs are constructed by two different algorithms: (i) a new time-stepping algorithm resembling a damped system of attracted particles developed here, and (ii) the heuristic swapping of coordinates. The designs constructed by the time-stepping algorithm are attached to the paper as a supplementary material. The computer code for construction of the designs is attached too.

  • Název v anglickém jazyce

    Periodic version of the minimax distance criterion for Monte Carlo integration

  • Popis výsledku anglicky

    The selection of points for numerical integration of the Monte Carlo type, largely used in analysis of engineering problems, is developed. It is achieved by modification of the metric in the minimax optimality criterion. The standard minimax criterion ensures the design exhibits good space-filling property and therefore reduces the variance of the estimator of the integral. We, however, show that the points are not selected with the same probability over the space of sampling probabilities: some regions are over- or under-sampled when designs are generated repetitively. This violation of statistical uniformity may lead to systematically biased integral estimators. We propose that periodic metric be considered for calculation of the minimax distance. Such periodic minimax criterion provides statistically uniform designs leading to unbiased integration results and also low estimator variance due to retained space-filling property. These conclusions are demonstrated by examples integrating analytical functions. The designs are constructed by two different algorithms: (i) a new time-stepping algorithm resembling a damped system of attracted particles developed here, and (ii) the heuristic swapping of coordinates. The designs constructed by the time-stepping algorithm are attached to the paper as a supplementary material. The computer code for construction of the designs is attached too.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20101 - Civil engineering

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ADVANCES IN ENGINEERING SOFTWARE

  • ISSN

    0965-9978

  • e-ISSN

    1873-5339

  • Svazek periodika

    149

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    13

  • Strana od-do

    1-13

  • Kód UT WoS článku

    000577084300007

  • EID výsledku v databázi Scopus

    2-s2.0-85090854333