Periodic version of the minimax distance criterion for Monte Carlo integration
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F20%3APU137297" target="_blank" >RIV/00216305:26110/20:PU137297 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0965997820300508" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0965997820300508</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.advengsoft.2020.102900" target="_blank" >10.1016/j.advengsoft.2020.102900</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Periodic version of the minimax distance criterion for Monte Carlo integration
Popis výsledku v původním jazyce
The selection of points for numerical integration of the Monte Carlo type, largely used in analysis of engineering problems, is developed. It is achieved by modification of the metric in the minimax optimality criterion. The standard minimax criterion ensures the design exhibits good space-filling property and therefore reduces the variance of the estimator of the integral. We, however, show that the points are not selected with the same probability over the space of sampling probabilities: some regions are over- or under-sampled when designs are generated repetitively. This violation of statistical uniformity may lead to systematically biased integral estimators. We propose that periodic metric be considered for calculation of the minimax distance. Such periodic minimax criterion provides statistically uniform designs leading to unbiased integration results and also low estimator variance due to retained space-filling property. These conclusions are demonstrated by examples integrating analytical functions. The designs are constructed by two different algorithms: (i) a new time-stepping algorithm resembling a damped system of attracted particles developed here, and (ii) the heuristic swapping of coordinates. The designs constructed by the time-stepping algorithm are attached to the paper as a supplementary material. The computer code for construction of the designs is attached too.
Název v anglickém jazyce
Periodic version of the minimax distance criterion for Monte Carlo integration
Popis výsledku anglicky
The selection of points for numerical integration of the Monte Carlo type, largely used in analysis of engineering problems, is developed. It is achieved by modification of the metric in the minimax optimality criterion. The standard minimax criterion ensures the design exhibits good space-filling property and therefore reduces the variance of the estimator of the integral. We, however, show that the points are not selected with the same probability over the space of sampling probabilities: some regions are over- or under-sampled when designs are generated repetitively. This violation of statistical uniformity may lead to systematically biased integral estimators. We propose that periodic metric be considered for calculation of the minimax distance. Such periodic minimax criterion provides statistically uniform designs leading to unbiased integration results and also low estimator variance due to retained space-filling property. These conclusions are demonstrated by examples integrating analytical functions. The designs are constructed by two different algorithms: (i) a new time-stepping algorithm resembling a damped system of attracted particles developed here, and (ii) the heuristic swapping of coordinates. The designs constructed by the time-stepping algorithm are attached to the paper as a supplementary material. The computer code for construction of the designs is attached too.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ADVANCES IN ENGINEERING SOFTWARE
ISSN
0965-9978
e-ISSN
1873-5339
Svazek periodika
149
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
000577084300007
EID výsledku v databázi Scopus
2-s2.0-85090854333