Fracture in random quasibrittle media: II. Analytical model based on extremes of the averaging process
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F20%3APU137299" target="_blank" >RIV/00216305:26110/20:PU137299 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0013794420307384" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0013794420307384</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.engfracmech.2020.107155" target="_blank" >10.1016/j.engfracmech.2020.107155</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fracture in random quasibrittle media: II. Analytical model based on extremes of the averaging process
Popis výsledku v původním jazyce
The paper delivers an analytical model for prediction of the peak force in concrete specimens loaded in bending (both notched and unnotched). The model is capable of predicting peak force statistics by computing the extreme values of sliding averages of random strength fields. The local strength of the specimen is modeled by a stationary isotropic random field with Gaussian distribution and a given autocorrelation function. The averaging operation represents the progressive loss in material integrity and the associated stress redistribution that takes place prior to reaching the peak load. Once the (linear) averaging process is performed analytically, the resulting random field of averaged strength is assumed to represent a series of representative volume elements (RVEs) and the global strength is found by solving for the minimum of such an effective strength field. All these operations can be written analytically and there are only four model parameters: the three dimensions of the averaging volume (RVE) and the length of the final weakest-link chain. The model is verified using detailed numerical computations of notched and unnotched concrete beams simulated by mesoscale discrete simulations of concrete fracture performed with probabilistic distributions of model parameters. These are presented in the companion paper Part I (Elias; and Vorechovsky, 2020). The numerical model used for verification represents material randomness both by assigning random locations to the largest aggregates and by simulating random fluctuations of material parameters via a homogeneous random field.
Název v anglickém jazyce
Fracture in random quasibrittle media: II. Analytical model based on extremes of the averaging process
Popis výsledku anglicky
The paper delivers an analytical model for prediction of the peak force in concrete specimens loaded in bending (both notched and unnotched). The model is capable of predicting peak force statistics by computing the extreme values of sliding averages of random strength fields. The local strength of the specimen is modeled by a stationary isotropic random field with Gaussian distribution and a given autocorrelation function. The averaging operation represents the progressive loss in material integrity and the associated stress redistribution that takes place prior to reaching the peak load. Once the (linear) averaging process is performed analytically, the resulting random field of averaged strength is assumed to represent a series of representative volume elements (RVEs) and the global strength is found by solving for the minimum of such an effective strength field. All these operations can be written analytically and there are only four model parameters: the three dimensions of the averaging volume (RVE) and the length of the final weakest-link chain. The model is verified using detailed numerical computations of notched and unnotched concrete beams simulated by mesoscale discrete simulations of concrete fracture performed with probabilistic distributions of model parameters. These are presented in the companion paper Part I (Elias; and Vorechovsky, 2020). The numerical model used for verification represents material randomness both by assigning random locations to the largest aggregates and by simulating random fluctuations of material parameters via a homogeneous random field.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Engineering Fracture Mechanics
ISSN
0013-7944
e-ISSN
1873-7315
Svazek periodika
235
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
20
Strana od-do
„107155-1“-„107155-20“
Kód UT WoS článku
000557354400006
EID výsledku v databázi Scopus
2-s2.0-85087869428