Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fracture in random quasibrittle media: II. Analytical model based on extremes of the averaging process

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F20%3APU137299" target="_blank" >RIV/00216305:26110/20:PU137299 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0013794420307384" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0013794420307384</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.engfracmech.2020.107155" target="_blank" >10.1016/j.engfracmech.2020.107155</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fracture in random quasibrittle media: II. Analytical model based on extremes of the averaging process

  • Popis výsledku v původním jazyce

    The paper delivers an analytical model for prediction of the peak force in concrete specimens loaded in bending (both notched and unnotched). The model is capable of predicting peak force statistics by computing the extreme values of sliding averages of random strength fields. The local strength of the specimen is modeled by a stationary isotropic random field with Gaussian distribution and a given autocorrelation function. The averaging operation represents the progressive loss in material integrity and the associated stress redistribution that takes place prior to reaching the peak load. Once the (linear) averaging process is performed analytically, the resulting random field of averaged strength is assumed to represent a series of representative volume elements (RVEs) and the global strength is found by solving for the minimum of such an effective strength field. All these operations can be written analytically and there are only four model parameters: the three dimensions of the averaging volume (RVE) and the length of the final weakest-link chain. The model is verified using detailed numerical computations of notched and unnotched concrete beams simulated by mesoscale discrete simulations of concrete fracture performed with probabilistic distributions of model parameters. These are presented in the companion paper Part I (Elias; and Vorechovsky, 2020). The numerical model used for verification represents material randomness both by assigning random locations to the largest aggregates and by simulating random fluctuations of material parameters via a homogeneous random field.

  • Název v anglickém jazyce

    Fracture in random quasibrittle media: II. Analytical model based on extremes of the averaging process

  • Popis výsledku anglicky

    The paper delivers an analytical model for prediction of the peak force in concrete specimens loaded in bending (both notched and unnotched). The model is capable of predicting peak force statistics by computing the extreme values of sliding averages of random strength fields. The local strength of the specimen is modeled by a stationary isotropic random field with Gaussian distribution and a given autocorrelation function. The averaging operation represents the progressive loss in material integrity and the associated stress redistribution that takes place prior to reaching the peak load. Once the (linear) averaging process is performed analytically, the resulting random field of averaged strength is assumed to represent a series of representative volume elements (RVEs) and the global strength is found by solving for the minimum of such an effective strength field. All these operations can be written analytically and there are only four model parameters: the three dimensions of the averaging volume (RVE) and the length of the final weakest-link chain. The model is verified using detailed numerical computations of notched and unnotched concrete beams simulated by mesoscale discrete simulations of concrete fracture performed with probabilistic distributions of model parameters. These are presented in the companion paper Part I (Elias; and Vorechovsky, 2020). The numerical model used for verification represents material randomness both by assigning random locations to the largest aggregates and by simulating random fluctuations of material parameters via a homogeneous random field.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20102 - Construction engineering, Municipal and structural engineering

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Engineering Fracture Mechanics

  • ISSN

    0013-7944

  • e-ISSN

    1873-7315

  • Svazek periodika

    235

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    20

  • Strana od-do

    „107155-1“-„107155-20“

  • Kód UT WoS článku

    000557354400006

  • EID výsledku v databázi Scopus

    2-s2.0-85087869428