Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Mechanism-Based Energy Regularization in Computational Modeling of Quasibrittle Fracture

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F20%3APU137300" target="_blank" >RIV/00216305:26110/20:PU137300 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://appliedmechanics.asmedigitalcollection.asme.org/article.aspx?articleid=2664355" target="_blank" >http://appliedmechanics.asmedigitalcollection.asme.org/article.aspx?articleid=2664355</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1115/1.4047207" target="_blank" >10.1115/1.4047207</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Mechanism-Based Energy Regularization in Computational Modeling of Quasibrittle Fracture

  • Popis výsledku v původním jazyce

    Quasibrittle materials are featured by a strain-softening constitutive behavior under many loading scenarios, which could eventually lead to localization instability. It has long been known that strain localization would result in spurious mesh sensitivity in finite element (FE) simulations. Previous studies have shown that, for the case of fully localized damage, the mesh sensitivity can be mitigated through energy regularization of the material constitutive law. However, depending on the loading configuration and structural geometry, quasibrittle structures could exhibit a complex damage process, which involves both localized and diffused damage patterns at different stages of loading. This study presents a generalized energy regularization method that considers the spatial and temporal evolution of damage pattern. The method introduces a localization parameter, which describes the local damage pattern. The localization parameter governs the energy regularization of the constitutive model, which captures the transition from diffused to localized damage during the failure process. The method is cast into an isotropic damage model, and is further extended to rate-dependent behavior. The energy regularization scheme is directly incorporated into the kinetics of damage growth. The model is applied to simulate static and dynamic failures of ceramic specimens. It is shown that the present model is able to effectively mitigate the spurious mesh sensitivity in FE simulations of both types of failure. The present analysis demonstrates the essential role of mechanism-based energy regularization of constitutive relation in FE simulations of quasibrittle fracture.

  • Název v anglickém jazyce

    Mechanism-Based Energy Regularization in Computational Modeling of Quasibrittle Fracture

  • Popis výsledku anglicky

    Quasibrittle materials are featured by a strain-softening constitutive behavior under many loading scenarios, which could eventually lead to localization instability. It has long been known that strain localization would result in spurious mesh sensitivity in finite element (FE) simulations. Previous studies have shown that, for the case of fully localized damage, the mesh sensitivity can be mitigated through energy regularization of the material constitutive law. However, depending on the loading configuration and structural geometry, quasibrittle structures could exhibit a complex damage process, which involves both localized and diffused damage patterns at different stages of loading. This study presents a generalized energy regularization method that considers the spatial and temporal evolution of damage pattern. The method introduces a localization parameter, which describes the local damage pattern. The localization parameter governs the energy regularization of the constitutive model, which captures the transition from diffused to localized damage during the failure process. The method is cast into an isotropic damage model, and is further extended to rate-dependent behavior. The energy regularization scheme is directly incorporated into the kinetics of damage growth. The model is applied to simulate static and dynamic failures of ceramic specimens. It is shown that the present model is able to effectively mitigate the spurious mesh sensitivity in FE simulations of both types of failure. The present analysis demonstrates the essential role of mechanism-based energy regularization of constitutive relation in FE simulations of quasibrittle fracture.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20302 - Applied mechanics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-12197S" target="_blank" >GA19-12197S: Sdružená Úloha Mechaniky a Proudění v Betonu Řešená Pomocí Meso-Úrovňového Diskrétního Modelu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME

  • ISSN

    0021-8936

  • e-ISSN

    1528-9036

  • Svazek periodika

    87

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    „091003-1“-„091003-11“

  • Kód UT WoS článku

    000562836800003

  • EID výsledku v databázi Scopus

    2-s2.0-85096600862