Reliability-based optimization of a prestressed concrete roof girder using a surrogate model and the double-loop approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F21%3APU141563" target="_blank" >RIV/00216305:26110/21:PU141563 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/suco.202000455" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/suco.202000455</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/suco.202000455" target="_blank" >10.1002/suco.202000455</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reliability-based optimization of a prestressed concrete roof girder using a surrogate model and the double-loop approach
Popis výsledku v původním jazyce
The paper describes the reliability-based optimization of a TT-shaped precast roof girder produced in Austria. An extensive experimental programme was performed using laboratory specimens to gain information on the mechanical fracture parameters of the utilized concrete. Subsequently, destructive shear tests were performed on scaled-down and full-scale girders under laboratory conditions. The experiments helped in the development of an accurate numerical model of the girder. The developed model was consequently used for the advanced stochastic analysis of structural response, followed by reliability-based optimization, which was used to maximize the shear and bending capacities of the girder and minimize production cost under defined reliability constraints. The enormous computational requirements of the double-loop optimization approach were significantly reduced by the utilization of an artificial neural network-based surrogate model instead of the original nonlinear finite element model of the optimized structure.
Název v anglickém jazyce
Reliability-based optimization of a prestressed concrete roof girder using a surrogate model and the double-loop approach
Popis výsledku anglicky
The paper describes the reliability-based optimization of a TT-shaped precast roof girder produced in Austria. An extensive experimental programme was performed using laboratory specimens to gain information on the mechanical fracture parameters of the utilized concrete. Subsequently, destructive shear tests were performed on scaled-down and full-scale girders under laboratory conditions. The experiments helped in the development of an accurate numerical model of the girder. The developed model was consequently used for the advanced stochastic analysis of structural response, followed by reliability-based optimization, which was used to maximize the shear and bending capacities of the girder and minimize production cost under defined reliability constraints. The enormous computational requirements of the double-loop optimization approach were significantly reduced by the utilization of an artificial neural network-based surrogate model instead of the original nonlinear finite element model of the optimized structure.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-09491S" target="_blank" >GA19-09491S: Víceúrovňové stanovení lomově-mechanických parametrů pro simulaci betonových konstrukcí (MUFRAS)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Structural Concrete
ISSN
1464-4177
e-ISSN
1751-7648
Svazek periodika
22
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
18
Strana od-do
2184-2201
Kód UT WoS článku
000664424600001
EID výsledku v databázi Scopus
2-s2.0-85108283172