Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Earthquake Magnitude Estimation using Precise Point Positioning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F21%3APU142420" target="_blank" >RIV/00216305:26110/21:PU142420 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00025615:_____/21:N0000037

  • Výsledek na webu

    <a href="https://iopscience.iop.org/article/10.1088/1755-1315/906/1/012107" target="_blank" >https://iopscience.iop.org/article/10.1088/1755-1315/906/1/012107</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1755-1315/906/1/012107" target="_blank" >10.1088/1755-1315/906/1/012107</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Earthquake Magnitude Estimation using Precise Point Positioning

  • Popis výsledku v původním jazyce

    An accurate estimation of an earthquake magnitude plays an important role in targeting emergency services towards affected areas. Along with the traditional methods using seismometers, site displacements caused by an earthquake can be monitored by the Global Navigation Satellite Systems (GNSS). GNSS can be used either in real-time for early warning systems or in offline mode for precise monitoring of ground motion. The Precise Point Positioning (PPP) offers an optimal method for such purposes, because data from only one receiver are considered and thus not affected by other potentially not stable stations. Precise external products and empirical models have to be applied, and the initial convergence can be reduced or eliminated by the backward smoothing strategy or integer ambiguity resolution. The product for the magnitude estimation is a peak ground displacement (PGD). PGDs observed at many GNSS stations can be utilized for a robust estimate of an earthquake magnitude. We tested the accuracy of estimated magnitude scaling when using displacement waveforms collected from six selected earthquakes between the years 2016 and 2020 with magnitudes in a range of 7.5– 8.2 Moment magnitude MW. We processed GNSS 1Hz and 5Hz data from 182 stations by the PPP method implemented in the G-Nut/Geb software. The precise satellites orbits and clocks corrections were provided by the Center for Orbit Determination in Europe (CODE). PGDs derived on individual GNSS sites formed the basis for ground motion parameters estimation. We processed the GNSS observations by the combination of the Kalman filter (FLT) and the backward smoother (SMT), which significantly enhanced the kinematic solution. The estimated magnitudes of all the included earthquakes were compared to the reference values released by the U. S. Geological Survey (USGS). The moment magnitude based on SMT was improved by 20% compared to the FLT-only solution. An average difference from the comparison was 0.07 MW and 0.09 MW

  • Název v anglickém jazyce

    Earthquake Magnitude Estimation using Precise Point Positioning

  • Popis výsledku anglicky

    An accurate estimation of an earthquake magnitude plays an important role in targeting emergency services towards affected areas. Along with the traditional methods using seismometers, site displacements caused by an earthquake can be monitored by the Global Navigation Satellite Systems (GNSS). GNSS can be used either in real-time for early warning systems or in offline mode for precise monitoring of ground motion. The Precise Point Positioning (PPP) offers an optimal method for such purposes, because data from only one receiver are considered and thus not affected by other potentially not stable stations. Precise external products and empirical models have to be applied, and the initial convergence can be reduced or eliminated by the backward smoothing strategy or integer ambiguity resolution. The product for the magnitude estimation is a peak ground displacement (PGD). PGDs observed at many GNSS stations can be utilized for a robust estimate of an earthquake magnitude. We tested the accuracy of estimated magnitude scaling when using displacement waveforms collected from six selected earthquakes between the years 2016 and 2020 with magnitudes in a range of 7.5– 8.2 Moment magnitude MW. We processed GNSS 1Hz and 5Hz data from 182 stations by the PPP method implemented in the G-Nut/Geb software. The precise satellites orbits and clocks corrections were provided by the Center for Orbit Determination in Europe (CODE). PGDs derived on individual GNSS sites formed the basis for ground motion parameters estimation. We processed the GNSS observations by the combination of the Kalman filter (FLT) and the backward smoother (SMT), which significantly enhanced the kinematic solution. The estimated magnitudes of all the included earthquakes were compared to the reference values released by the U. S. Geological Survey (USGS). The moment magnitude based on SMT was improved by 20% compared to the FLT-only solution. An average difference from the comparison was 0.07 MW and 0.09 MW

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10505 - Geology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    7th World Multidisciplinary Earth Sciences Symposium, WMESS 2021

  • ISBN

  • ISSN

    1755-1307

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    1-10

  • Název nakladatele

    IOP Publishing

  • Místo vydání

    Bristol (UK)

  • Místo konání akce

    Praha

  • Datum konání akce

    6. 9. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku