Taylor Series Expansion for Statistical Analysis of Existing Concrete Bridge
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F21%3APU143774" target="_blank" >RIV/00216305:26110/21:PU143774 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-91877-4_27" target="_blank" >http://dx.doi.org/10.1007/978-3-030-91877-4_27</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-91877-4_27" target="_blank" >10.1007/978-3-030-91877-4_27</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Taylor Series Expansion for Statistical Analysis of Existing Concrete Bridge
Popis výsledku v původním jazyce
The paper is focused on semi-probabilistic assessment of existing prestressed concrete bridge using Taylor series expansion. Probabilistic assessment of existing structures represented by non-linear finite element models is computationally highly demanding and thus semi-probabilistic approach gets a growing attention in a recent decade. In semi-probabilistic approach, design value of resistance is estimated in a simplified way. For estimation of design value, it is crucial to estimate coefficient of variation of structural resistance with limited number of simulations. In this paper, recently proposed Taylor series expansion with adapted differentiation is employed and obtained results are compared to a reference solution obtained by latin hypercube sampling. Practical example is represented by an existing bridge structure failing in bending. It can be seen that results obtained by Taylor series expansion are in good agreement with reference solution but its efficiency is significantly higher. Moreover, it is shown that an accuracy of estimated variance can be easily improved by few additional samples in specific coordinates.
Název v anglickém jazyce
Taylor Series Expansion for Statistical Analysis of Existing Concrete Bridge
Popis výsledku anglicky
The paper is focused on semi-probabilistic assessment of existing prestressed concrete bridge using Taylor series expansion. Probabilistic assessment of existing structures represented by non-linear finite element models is computationally highly demanding and thus semi-probabilistic approach gets a growing attention in a recent decade. In semi-probabilistic approach, design value of resistance is estimated in a simplified way. For estimation of design value, it is crucial to estimate coefficient of variation of structural resistance with limited number of simulations. In this paper, recently proposed Taylor series expansion with adapted differentiation is employed and obtained results are compared to a reference solution obtained by latin hypercube sampling. Practical example is represented by an existing bridge structure failing in bending. It can be seen that results obtained by Taylor series expansion are in good agreement with reference solution but its efficiency is significantly higher. Moreover, it is shown that an accuracy of estimated variance can be easily improved by few additional samples in specific coordinates.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-01781S" target="_blank" >GA20-01781S: Modelování nejistot při hodnocení spolehlivosti betonových konstrukcí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 1st Conference of the European Association on Quality Control of Bridges and Structures
ISBN
9783030918767
ISSN
2366-2557
e-ISSN
—
Počet stran výsledku
8
Strana od-do
228-235
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
neuveden
Místo konání akce
Padova, Italy
Datum konání akce
29. 8. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—