On distribution-based global sensitivity analysis by polynomial chaos expansion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F22%3APU144692" target="_blank" >RIV/00216305:26110/22:PU144692 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0045794922000682" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0045794922000682</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compstruc.2022.106808" target="_blank" >10.1016/j.compstruc.2022.106808</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On distribution-based global sensitivity analysis by polynomial chaos expansion
Popis výsledku v původním jazyce
This paper presents a novel distribution-based global sensitivity analysis based on the Kullback-Leibler divergence derived directly from generalized polynomial chaos expansion (PCE). The synergy between PCE and Gram-Charlier expansion is utilized for derivation of novel and computationally efficient sensitivity indices. In contrast to a standard procedure for estimation of higher statistical moments, this paper reviews standard linearization problem of Hermite and Jacobi polynomials in order to efficiently estimate skewness and kurtosis direclty from PCE. Higher statistical moments are used for an estimation of probability distribution by Gram-Charlier expansion, which is represented by derived explicit cumulative distribution function. The proposed sensitivity indices taking the whole probability distribution into account are calculated for several numerical examples of increasing complexity in order to present their possibilities. It is shown, that the proposed sensitivity indices are obtained without any additional computational demands together with Sobol indices, and thus can be easily used as complementary information for a complex sensitivity analysis or any decision making in industrial applications. Application of the proposed approach on engineering structure is presented in case of prestressed concrete roof girders failing shear. Moreover, the potential of the proposed approach for reliability-oriented sensitivity analysis is investigated in pilot numerical example.(c) 2022 Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
On distribution-based global sensitivity analysis by polynomial chaos expansion
Popis výsledku anglicky
This paper presents a novel distribution-based global sensitivity analysis based on the Kullback-Leibler divergence derived directly from generalized polynomial chaos expansion (PCE). The synergy between PCE and Gram-Charlier expansion is utilized for derivation of novel and computationally efficient sensitivity indices. In contrast to a standard procedure for estimation of higher statistical moments, this paper reviews standard linearization problem of Hermite and Jacobi polynomials in order to efficiently estimate skewness and kurtosis direclty from PCE. Higher statistical moments are used for an estimation of probability distribution by Gram-Charlier expansion, which is represented by derived explicit cumulative distribution function. The proposed sensitivity indices taking the whole probability distribution into account are calculated for several numerical examples of increasing complexity in order to present their possibilities. It is shown, that the proposed sensitivity indices are obtained without any additional computational demands together with Sobol indices, and thus can be easily used as complementary information for a complex sensitivity analysis or any decision making in industrial applications. Application of the proposed approach on engineering structure is presented in case of prestressed concrete roof girders failing shear. Moreover, the potential of the proposed approach for reliability-oriented sensitivity analysis is investigated in pilot numerical example.(c) 2022 Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-01734S" target="_blank" >GA20-01734S: Pravděpodobnostně orientovaná globální citlivostní měření konstrukční spolehlivosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTERS & STRUCTURES
ISSN
0045-7949
e-ISSN
1879-2243
Svazek periodika
267
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
1-14
Kód UT WoS článku
000798355900001
EID výsledku v databázi Scopus
2-s2.0-85129298719