Homogenization of discrete diffusion models by asymptotic expansion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F22%3APU145185" target="_blank" >RIV/00216305:26110/22:PU145185 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/nag.3441" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/nag.3441</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/nag.3441" target="_blank" >10.1002/nag.3441</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Homogenization of discrete diffusion models by asymptotic expansion
Popis výsledku v původním jazyce
Diffusion behaviors of heterogeneous materials are of paramount importance in many engineering problems. Numerical models that take into account the internal structure of such materials are robust but computationally very expensive. This burden can be partially decreased by using discrete models, however even then the practical application is limited to relatively small material volumes. This paper formulates a homogenization scheme for discrete diffusion models. Asymptotic expansion homogenization is applied to distinguish between (i) the continuous macroscale description approximated by the standard finite element method and (ii) the fully resolved discrete mesoscale description in a local representative volume element (RVE) of material. Both transient and steady-state variants with nonlinear constitutive relations are discussed. In all the cases, the resulting discrete RVE problem becomes a simple linear steady-state problem that can be easily pre-computed. The scale separation provides a significant reduction of computational time allowing the solution of practical problems with a~negligible error introduced mainly by the finite element discretization at the macroscale.
Název v anglickém jazyce
Homogenization of discrete diffusion models by asymptotic expansion
Popis výsledku anglicky
Diffusion behaviors of heterogeneous materials are of paramount importance in many engineering problems. Numerical models that take into account the internal structure of such materials are robust but computationally very expensive. This burden can be partially decreased by using discrete models, however even then the practical application is limited to relatively small material volumes. This paper formulates a homogenization scheme for discrete diffusion models. Asymptotic expansion homogenization is applied to distinguish between (i) the continuous macroscale description approximated by the standard finite element method and (ii) the fully resolved discrete mesoscale description in a local representative volume element (RVE) of material. Both transient and steady-state variants with nonlinear constitutive relations are discussed. In all the cases, the resulting discrete RVE problem becomes a simple linear steady-state problem that can be easily pre-computed. The scale separation provides a significant reduction of computational time allowing the solution of practical problems with a~negligible error introduced mainly by the finite element discretization at the macroscale.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-12197S" target="_blank" >GA19-12197S: Sdružená Úloha Mechaniky a Proudění v Betonu Řešená Pomocí Meso-Úrovňového Diskrétního Modelu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS
ISSN
0363-9061
e-ISSN
1096-9853
Svazek periodika
46
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
21
Strana od-do
3052-3073
Kód UT WoS článku
000852388700001
EID výsledku v databázi Scopus
2-s2.0-85135380111