Thermodynamic responses of adaptive mechanisms in BiPV fa?ade systems coupled with latent thermal energy storage
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F23%3APU146719" target="_blank" >RIV/00216305:26110/23:PU146719 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62156489:43410/23:43922363
Výsledek na webu
<a href="https://linkinghub.elsevier.com/retrieve/pii/S0378778822008362" target="_blank" >https://linkinghub.elsevier.com/retrieve/pii/S0378778822008362</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.enbuild.2022.112665" target="_blank" >10.1016/j.enbuild.2022.112665</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Thermodynamic responses of adaptive mechanisms in BiPV fa?ade systems coupled with latent thermal energy storage
Popis výsledku v původním jazyce
Ventilated building-integrated photovoltaic (BiPV)/phase-change material (PCM) facades have been applied and validated in building energy simulations; however, the dynamic thermal response of these facades has not been investigated. Notably, performance predictions and simulations for systems featur-ing natural airflows in the facade cavity are important for guiding the decision-making for energy-efficient buildings. To address this challenge in literature, in this work, numerical analyses were con-ducted, focusing on the climate adaptive reactions of a BiPV facade system coupled with a latent thermal energy storage system, based on a PCM. Numerical methods for determining the PCM heat transfer were evaluated, including their limitations. The thermodynamic reactions of two BiPV facade concepts were comparatively studied using two simulation domains: building energy simulations and computational fluid dynamics. The reliability of the theoretical methods was also evaluated. Good agreement between the simulation results and experimental data was noted through dynamic outdoor tests, empirically val-idating the study; standard statistical indicators were calculated and employed to assess the consistency between the experimental and simulation results. The used numerical approach can reliably predict the thermo-responsive capabilities of PCM-based BiPV facades with respect to the overall tendencies. The parameter variation techniques revealed modifications in the overall thermal and energy performance of the facade system. The most undesirable instance of overheating was predicted when using RT27; therefore, the PCM is considered inappropriate in this case. (c) 2022 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Thermodynamic responses of adaptive mechanisms in BiPV fa?ade systems coupled with latent thermal energy storage
Popis výsledku anglicky
Ventilated building-integrated photovoltaic (BiPV)/phase-change material (PCM) facades have been applied and validated in building energy simulations; however, the dynamic thermal response of these facades has not been investigated. Notably, performance predictions and simulations for systems featur-ing natural airflows in the facade cavity are important for guiding the decision-making for energy-efficient buildings. To address this challenge in literature, in this work, numerical analyses were con-ducted, focusing on the climate adaptive reactions of a BiPV facade system coupled with a latent thermal energy storage system, based on a PCM. Numerical methods for determining the PCM heat transfer were evaluated, including their limitations. The thermodynamic reactions of two BiPV facade concepts were comparatively studied using two simulation domains: building energy simulations and computational fluid dynamics. The reliability of the theoretical methods was also evaluated. Good agreement between the simulation results and experimental data was noted through dynamic outdoor tests, empirically val-idating the study; standard statistical indicators were calculated and employed to assess the consistency between the experimental and simulation results. The used numerical approach can reliably predict the thermo-responsive capabilities of PCM-based BiPV facades with respect to the overall tendencies. The parameter variation techniques revealed modifications in the overall thermal and energy performance of the facade system. The most undesirable instance of overheating was predicted when using RT27; therefore, the PCM is considered inappropriate in this case. (c) 2022 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20100 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-00630S" target="_blank" >GA20-00630S: Klimaticky adaptivní prvky integrované ve vývoji energeticky a ekologicky efektivní obálky budovy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ENERGY AND BUILDINGS
ISSN
0378-7788
e-ISSN
1872-6178
Svazek periodika
279
Číslo periodika v rámci svazku
112665
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
000895075900005
EID výsledku v databázi Scopus
2-s2.0-85142729559