Inverse analysis and optimization-based model updating for structural damage detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F23%3APU149729" target="_blank" >RIV/00216305:26110/23:PU149729 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/epdf/10.1002/cepa.2136" target="_blank" >https://onlinelibrary.wiley.com/doi/epdf/10.1002/cepa.2136</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/cepa.2136" target="_blank" >10.1002/cepa.2136</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Inverse analysis and optimization-based model updating for structural damage detection
Popis výsledku v původním jazyce
Structural health monitoring and early detection of structural damage is extremely important to maintain and preserve the service life of civil engineering structures. Identification of structural damage is usually performed using non-destructive vibration experiments combined with a mathematical procedure called model updating. The finite element model of the investigated structure is updated by incrementally adjusting its parameters so that the model responses gradually approach those of the real possibly damaged structure under investigation. This paper describes the use of two model updating methods. The first method employs metaheuristic optimization technique aimed multilevel sampling to efficiently search the design parameter space to achieve the best match between the deformed structure and its model. The second method approaches model updating as an inverse problem and uses machine learning-based model to approximate inverse relationship between structural response and structural parameters. Both methods are applied to damage identification of single- and double-span steel trusses. Finally, initial results of the hybrid method are presented. The effect of the damage rate and location on the identification speed and the accuracy of the solution is investigated and discussed.
Název v anglickém jazyce
Inverse analysis and optimization-based model updating for structural damage detection
Popis výsledku anglicky
Structural health monitoring and early detection of structural damage is extremely important to maintain and preserve the service life of civil engineering structures. Identification of structural damage is usually performed using non-destructive vibration experiments combined with a mathematical procedure called model updating. The finite element model of the investigated structure is updated by incrementally adjusting its parameters so that the model responses gradually approach those of the real possibly damaged structure under investigation. This paper describes the use of two model updating methods. The first method employs metaheuristic optimization technique aimed multilevel sampling to efficiently search the design parameter space to achieve the best match between the deformed structure and its model. The second method approaches model updating as an inverse problem and uses machine learning-based model to approximate inverse relationship between structural response and structural parameters. Both methods are applied to damage identification of single- and double-span steel trusses. Finally, initial results of the hybrid method are presented. The effect of the damage rate and location on the identification speed and the accuracy of the solution is investigated and discussed.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
EUROSTRUCT 2023 - European Association on Quality Control of Bridges and Structures: Digital Transformation in Sustainability
ISBN
—
ISSN
2509-7075
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1228-1233
Název nakladatele
Ernst & Sohn
Místo vydání
Berlin, Germany
Místo konání akce
Vienna, Austria
Datum konání akce
25. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001256546000037